
1

Contact Tracing App Privacy: What Data Is Shared
By Europe’s GAEN Contact Tracing Apps

Douglas J. Leith, Stephen Farrell
School of Computer Science & Statistics,

Trinity College Dublin, Ireland
18th July 2020

Abstract—We describe the data transmitted to backend servers
by the contact tracing apps now deployed in Germany, Italy,
Switzerland, Austria, Denmark, Spain, Poland, Latvia and Ire-
land with a view to evaluating user privacy. These apps consist
of two separate components: a “client” app managed by the
national public health authority and the Google/Apple Exposure
Notification (GAEN) service, that on Android devices is managed
by Google and is part of Google Play Services. We find that the
health authority client apps are generally well behaved from a
privacy point of view, although the privacy of the Irish, Polish,
Danish and Latvian apps could be improved. In marked contrast,
we find that the Google Play Services component of these apps
is extremely troubling from a privacy viewpoint. In one “privacy
conscious” configuration, Google Play Services still contacts
Google servers roughly every 20 minutes, potentially allowing
fine-grained location tracking via IP address. In addition, Google
Play services also shares the phone IMEI, hardware serial
number, SIM serial number, handset phone number, the WiFi
MAC address and user email address with Google, together with
fine-grained data on the apps running on the phone. This data
collection is enabled simply by enabling Google Play Services,
even when all other Google services and settings are disabled.
It therefore appears to be unavoidable for users of GAEN-based
contact tracing apps on Android. This level of intrusiveness seems
incompatible with a recommendation for population-wide usage.
We note the health authority client app component of these
contact tracing apps has generally received considerable public
scrutiny and typically has a Data Protection Impact Assessment,
whereas no such public documents exist for the GAEN component
of these apps. Extending public governance to the full contact
tracing ecosystem, not just of the health authority client app
component, therefore seems to be urgently needed if public
confidence is to be maintained.

I. INTRODUCTION

Countries across Europe are currently rolling out mobile apps
to facilitate Covid-19 contact tracing. This is motivated by the
hope that more efficient and scalable contact tracing might
allow the lockdown measures in place in many countries to
be relaxed more quickly [1] and that these systems can help
“hedge” against the risk of a second wave of the pandemic [2].
In early April 2020, Apple and Google formed a partnership
to develop contact event detection based on Bluetooth LE [3].
Following public launch of the Google/Apple Exposure Noti-
fication (GAEN) API on 20 May 2020 [4], GAEN implemen-
tations are now installed on many people’s phones and this
API is starting to be widely used by national health authority
contact tracing apps.

The pressures imposed by the ongoing pandemic and the
timeline above mean that all this development has taken
place under severe time-pressure with many decisions having
to be made speedily in the face of significant uncertainty.
We therefore approach this measurement exercise with a
view to highlighting potential improvements, and not from a
perspective of attempting to allocate blame. We believe that
all of the actors involved are attempting to do their best in a
challenging situation. That said, given that many governments
are encouraging entire populations to use these apps it is
necessary that the detail of their operation be visible to enable
properly informed choices by users and potential users of these
apps.

We measure the actual data transmitted to backend servers
by the GAEN-based contact tracing apps now deployed in
Germany [5], Italy [6], Switzerland [7], Austria [8], Den-
mark [9], Poland [10], Latvia [11] and Ireland [12] with a view
to evaluating user privacy. We also take measurements with
the RadarCOVID [13] app currently being trialled in Spain.
To the best of our knowledge this is the first examination of
the privacy of the overall GAEN service as deployed to date.
In this report we focus on an independent assessment of data
shared by the Android implementations of contact tracing apps
based on the GAEN API. We look forward to similar work
being done with the Apple app implementations and of Apple’s
underlying handling of privacy whilst GAEN apps are in use.

It is important to note that all of these apps consist of two
separate components, under the control of different parties.
Firstly, a “client” app managed by the national public health
authority. This client app provides the user interface. It also
interacts with nationally managed back-end servers to (i) allow
the upload of handset keys (TEKs in GAEN parlance, also
termed “Diagnosis Keys”) when a person is detected as being
infected with Covid-19, (ii) to download the published keys
for infected people to allow people to check whether they have
been near to an infected person and (iii) to download updates
to app configuration settings. In addition, some client apps
send telemetry data to backend servers about how people have
been using the client app e.g. time spent on different screens
within the app.

The second component of all of these apps is the Google/Apple
Exposure Notification service, that on Android devices is
managed by Google and is part of Google Play Services [14].

michael
Text hervorheben

michael
Text hervorheben

michael
Text hervorheben

2

The Exposure Notification service manages transmission and
reception of Bluetooth LE beacons and recording of the
duration and signal strength of received beacons [14], [15].
It therefore plays a central role in the contact tracing func-
tionality of the apps.

In summary, we find that the health authority client apps
are generally well behaved from a privacy point of view.
Indeed, the CoronaWarn (Germany), SwissCovid (Switzer-
land), StoppCorona (Austria) and Immuni (Italy) apps all
appear exemplary with regard to privacy. SmitteStop (Den-
mark) and RadarCOVID (Spain) also behave well but have
the deficiencies that they do not use SSL certificate pinning to
verify that they are securely communicating with the correct
server, and also that they are closed-source1. We recommend
that SmitteStop and RadarCOVID both implement certificate
pinning and make their app code open source.

Since the authors are Irish we obviously have a special interest
in the CovidTracker (Ireland) app. This app makes an initial
call to Google’s Firebase service but then makes no further
use of the service. We have confirmed with the Irish Health
Service Executive (HSE) that this call is a hangover from an
earlier version of the app and will be removed2. CovidTracker
sends an “Authorization” HTTP header field in almost all of
its communications with the HSE backend server that allows
requests from the same handset to be linked together. The Data
Protection Impact Assessment for the CovidTracker app [17]
states that “IP addresses of users are never transmitted from
the networking layer to the backend servers” and so linked
requests are not used to track user location over time via the
IP address. Nevertheless, such linking of requests over time
seems undesirable and is also not clearly communicated by the
existing app documentation. We therefore recommend that the
“Authorization” HTTP header field be removed, certainly for
TEK downloads, but also for “metrics” and “checkins”. Covid-
Tracker encourages users to opt-in to sending metrics. These
metrics include a mix of device operations data (e.g. number
of active users) and medical-related data (e.g. number of close
contact notifications, whether a user is diagnosed with Covid-
19). We recommend that that these two types of data be held in
separate security contexts, e.g. by encrypting medical data so
that only medical staff can decrypt it. CovidTracker also uses
Google’s SafetyNet service to verify handset integrity. This
involves the app sending data to Google servers, including
the handset hardware serial number, a long-lived identifier of

1CoronaWarn, SwissCovis, StoppCorona and Immuni are all open source
and use certificate pinning. The SmitteStop developers have confirmed that the
app does not use certificate pinning. We note that RadarCOVID is only being
piloted just now and so pinning may well have been omitted to simplify testing
and will be included in the production version. Absence of certificate pinning
means that the transactions of users in, for example, an enterprise network
using “Android work” [16] or similar are vulnerable to being exposed to the
employer. For example, the act of uploading keys following a positive test
phone call may be logged by the employer’s network security devices. We
note also the RadarCOVID appears to be based upon the D3PT SDK. While
this is open source RadarCOVID itself is currently closed-source.

2Unlike other open source contact tracing apps, the HSE’s github repository
does yet not allow issues to be raised and discussed. We asked the HSE to
enable issue tracking on 26th June but to date issue tracking remains disabled,
though the HSE have recently informed us they plan to remedy this situation.

the handset. We recommend that use of the SafetyNet service
be discontinued to remove this data sharing with Google and
bring CovidTracker into line with other European apps. We
discussed these issues with the HSE prior to publication. They
acknowledge the issues described here and have said they will
work to address them (although of course they may not agree
with all of our recommendations).

The ProteGO Safe (Poland) app uses Google’s Firebase service
to deliver app configuration settings and Google’s SafetyNet
service to check handset integrity. This means that there are
at least two parties involved in handling data, namely Google
(who operate the Firebase and SafetyNet infrastructure) and
the health authority operating the client app. ProteGO Safe
already runs its own server to publish the TEKs of infected
people, and so it would presumably be straightforward to also
use this to deliver configuration settings, thereby avoiding use
of Firebase. As already noted, use of Google’s SafetyNet
service also seems unnecessary and undesirable. We also
observe that ProteGO Safe fails to enforce SafetyNet checks.

The Apturi Covid (Latvia) app uses Firebase Analytics for
tracking user interactions with the client app, and this is
immediately more intrusive than the other apps we study. As
an example of this intrusiveness, a person who is considering
taking a COVID-19 test is presumably more likely to linger on
screens with relevant information, and that information ought
not be exposed to Google. We recommend that the app be
changed to allow users to opt in to this tracking, i.e disabling
it by default.

In contrast to the client app component, our measurements
indicate that the Google Play Services component of these
contact tracings apps is troubling from a privacy point of view.
Google Play Services connects to Google servers roughly
every 20 minutes. These requests necessarily disclose the
handset IP address to Google, a rough proxy for location, and
also contain persistent identifiers that allow requests from the
same device to be linked together. These requests therefore
potentially allow fine-grained tracking by Google of device
location over time. We note that Google’s privacy policy makes
clear that it uses IP addresses to estimate location, see the
“Your location information” section on the Google Privacy
Policy document [18] and it is also stated explicitly in the
Firebase (which is part of Google Play Services) documen-
tation that “Analytics derives location data from users’ IP
addresses” [19]. However, it is not clear for which requests the
IP addresses are used in this way and we have asked Google
to clarify.

When the “Usage & diagnostics” option in Google Play
Services is enabled (which it is by default), then telemetry
data on GAEN operation is shared with Google.

The data that Google Play Services sends to Google in these
connections also includes, amongst other things, the phone
IMEI, the handset hardware serial number, the SIM serial
number, the handset phone number, the WiFi MAC address
and the user email address. When combined with the potential
for fine-grained location tracking via IP address made possible

3

by the frequent nature of the requests Google Play Services
makes to Google servers, on the face of it it is hard to imagine
a more intrusive data collection setup.

In our tests we tried to configure the handset so that the
minimum possible data is shared with Google when using the
Google/Apple Exposure Notification service (we disabled all
Google apps and switched off the Google-related settings that
we could find, apart from the Exposure Notification service
itself). Our measurements of data shared with Google while
using these contact tracing apps are therefore an attempt at
characterising a minimal baseline and additional data may
well be shared in practice if less restrictive Google settings
are used. Since this data collection seems to be enabled
simply by enabling Google Play Services3, even when all other
Google services and settings are disabled, it is currently an
unavoidable aspect of GAEN-based contact tracing apps.

We shared a draft version of this report with Google who
responded that their telemetry is “an industry practice” and
is explained on Android support pages4 that also describe
ways in which parts of the telemetry can be turned off via
a “Usage & diagnostics” setting. We collected measurements
with the “Usage & diagnostics” setting both “on” and “off”
and observed a broadly similar pattern of network connections,
although the content of some of the connections that Google
Play Services makes to Google changes, in particular setting
this option to “off” disables sharing of GAEN telemetry data
with Google.

The broad nature of this data collection and the inability of
users to change Google settings so as to opt out of it appears,
on the face of it, in conflict with GDPR rules in Europe and
we therefore recommend it be brought to the attention of the
national data protection authorities. It also indicates that some
caution is warranted by governments and health authorities
currently promoting widespread use of their contact tracing
apps. Concerns regarding the efficacy of the Bluetooth-based
contact tracing technology used by GAEN are also pertinent,
e.g. see [20], [21], [22], [23], [24], since these indicate that
the benefits gained from such sacrifices of privacy remain far
from clear.

We make three main recommendations regarding Google Play
Services. Firstly, we recommend that user-friendly documenta-
tion is made available as to how to make Google Play Services
behave in as privacy-friendly a manner as possible while
using a GAEN app. Secondly, we recommend that Google
implement a “quiet mode” mechanism that enables users who
find the Google Play Services data sharing with Google prob-
lematic, to easily turn that off. Thirdly, we recommend that
the governance of the overall GAEN system be revisited. The
health authority client app component has generally received
considerable public scrutiny, with publication of detailed Data

3We contacted Google asking if there was a way to opt-out of this data
collection other than by disabling Google Play Services. Google confirmed
there was not.

4https://support.google.com/android/answer/9021432?hl=en and
https://support.google.com/accounts/answer/6078260?hl=en accessed July
16th 2020.

Protection Impact Assessment documents etc, and we recom-
mend that a governance arrangement that imposes a similar
level of scrutiny over the Google/Apple component of the
GAEN system is urgently needed.

It is worth noting that there is an ethical quandary in reporting
on the type of work we carry out here. The contact tracing
apps studied here are deployed and in active use. There is still
insufficient data to allow the effectiveness of these apps at
protecting public health to be determined, and good reasons
to have doubts about their likely effectiveness. However, if
the apps are effective and privacy concerns cause people to
stop using the apps then that is a potential harm. Equally,
since these apps are widely deployed and being used by
millions of people across Europe, and privacy concerns have
featured prominently in pre-deployment public discussions,
concealing new knowledge on the privacy impacts of these
apps would be unethical. There is no precedent, as far as we
are aware, establishing best practice for responsible disclosure
in such a situation. We have informed Google of our findings
and delayed publication to allow them to respond. We have
also informed the Irish HSE of our findings regarding the
CovidTracker app and delayed publication to allow them
time to respond, and similarly the developers of SmitteStop,
Apturi Covid and ProteGO Safe. A key consideration is what
mitigations are possible, and on what time scale can they
be deployed. It seems likely that any changes to Google
Play Services, even if they were agreed upon, will take a
considerable time to deploy (months rather than weeks) and
keeping app users in the dark for a long open-ended period
seems incorrect.

Regarding shorter-term mitigations, handset users themselves
are not powerless. They can, for example, install a firewall on
their handset and configure it to block inappropriate connec-
tions by Google Play Services. While such firewalls are not
available on Google Play Store, open source firewalls such
as Blokada [25] and NetGuard can be obtained from app
stores such as F-Droid [26]. More work is, however, needed to
confirm the compatibility of such firewalls with contact tracing
apps.

II. THREAT MODEL: WHAT DO WE MEAN BY PRIVACY?

It is important to note that transmission of user data to backend
servers is not intrinsically a privacy intrusion. For example, it
can be useful to share details of the user device model/version
and the locale/country of the device and this carries few
privacy risks if this data is common to many users since
the data itself cannot then be easily linked back to a specific
user [27], [28].

Issues arise, however, when data can be tied to a specific
user. One common way that this can happen is when an app
generates a long randomised string when first installed/started
and then transmits this alongside other data. The randomised
string then acts as an identifier of the app instance (since no
other apps share the same string value) and when the same
identifier is used across multiple transmissions it allows these
transmissions to be tied together across time.

4

Linking a sequence of transmissions to an app instance does
not explicitly reveal the user’s real-world identity. However,
the data can often be readily de-anonymised. One way that this
can occur is if the app directly asks for user details (e.g. phone
number, address). But it can also occur indirectly using the fact
that transmissions by an app always include the IP address of
the user device (or more likely of an upstream NAT gateway).
The IP address acts as a rough proxy for user location via
existing geoIP services and many studies have shown that
location data linked over time can be used to de-anonymise this
is unsurprising since, for example, knowledge of the work and
home locations of a user can be inferred from such location
data (based on where the user mostly spends time during the
day and evening), and when combined with other data this
information can quickly become quite revealing [29], [30].
A pertinent factor here is the frequency with which updates
are sent e.g. logging an IP address location once a day has
much less potential to be revealing than logging one every
few minutes.

With these concerns in mind, two of the main questions that
we try to answer in the present study are (i) What explicit
identifying data does each app directly send to its backend
servers and (ii) Does the data that each app transmits to
backend servers potentially allow tracking of the IP address
of the app instance over time.

III. MEASUREMENT SETUP

A. Viewing Content Of Encrypted Web Connections

All of the network connections we are interested in are
encrypted. To inspect the content of a connection we route
handset traffic via a WiFi access point (AP) that we control.
We configure this AP to use mitmdump [31] as a proxy
and adjust the firewall settings to redirect all WiFi traffic to
mitmdump so that the proxying is transparent to the handset.
In brief, when any app on the handset starts a new web
connection the mitmdump proxy pretends to be the destination
server and presents a fake certificate for the target server. This
allows mitmdump to decrypt the traffic. It then creates an
onward connection to the actual target server and acts as an
intermediary relaying requests and their replies between the
app and the target server while logging the traffic. The setup
is illustrated schematically in Figure 1.

The immediate difficulty encountered when using this setup is
that all modern apps carry out checks on the authenticity of
server certificates received when starting a new connection and
aborts the connection when these checks fail. To circumvent
these checks we use a rooted phone and use Frida [32] to
patch each contact tracing app and Google Play Services on
the fly to replace the relevant certificate validation functions
with dummy functions that always report validation checks as
being passed.

Implementing these changes is, however, a fairly laborious
manual process. The bulk of the effort needed lies in deducing
how to carry out this patching for Google Play Services as
it is closed-source and obfuscated (decompiling the bytecode
produces Java with randomised class and variable names etc)

Fig. 1. Measurement setup. The mobile handset is configured to access the
internet using a WiFi access point hosted on a laptop, use of cellular/mobile
data is disabled. The laptop also has a wired internet connection. When an
app on the handset starts a new web connection the laptop pretends to be the
destination server so that it can decrypt the traffic. It then creates an onward
connection to the actual target server and acts as an intermediary relaying
requests and their replies between the handset app and the target server while
logging the traffic.

plus it uses customised certificate checking code (so standard
unpinning methods fail). Many of the contact tracing apps use
standard libraries and so can be patched more easily, although
we found it slightly harder to patch the Immuni app since it
uses a deprecated API and the StoppCorona app since it uses
an obfuscated version of the Okhttp3 client.

B. Connection Data

Since the content of connections is not especially human-
friendly they are summarised and annotated in Appendix 2.
The raw connection data is also available on request by
sending an email to the author (since it contains identifiers and
authorization keys, posting the raw data publicly is probably
unwise).

C. Hardware and Software Used

Mobile handset: Google Pixel 2 running Android 9 with
Google Play Services 20.24.14 and Google Exposure No-
tification Service v202606000. Rooted using Magisk v19.1
and Magisk Manager v7.1.2 and running Frida Server
v12.5.2. Contact tracing app versions used: CoronaWarnApp
v1.0.4, SwissCovid v1.0.5, ApturiCovid 1.0.47, ProteGO Safe
v4.2, CovidTracker v1.0.40, SmitteStop v1.0.2, RadarCOVID
v1.0.0. Laptop: Apple Macbook running Mojav 10.14.6 run-
ning Frida 12.8.20 and mitmproxy v5.0.1. Using a USB
ethernet adapter the laptop is connected to a cable mo-
dem and so to the internet. The laptop is configured us-
ing its built in Internet Sharing function to operate as a
WiFi AP that routes wireless traffic over the wired con-
nection. The laptop firewall is then configured to redirect
received WiFi traffic to mitmproxy listening on port 8080
by adding the rule rdr pass on bridge100 inet
proto tcp to any port 80, 443 -> 127.0.0.1
port 8080. The handset is also connected to the laptop over
USB and this is used as a control channel (no data traffic is
routed over this connection) to carry out dynamic patching
using Frida. Namely, using the adb shell the Frida server
running on the handset is controlled from the laptop. In the
Developer Options screen on the handset the “Stay Awake”
option is set on.

5

D. Google Device Settings

While Android was developed by Google, it is open source and
can be used without interacting with Google services e.g. this
is common in China due to restrictions on use of Google ser-
vices there. Google Play Services is a different matter. Google
Play Services is a closed-source proprietary app that provides
Google services used by other apps, including analytics, crash
reporting, messaging, advertising, fused location and so on.
On Android the Google/Apple Exposure Notification service
is implemented within Google Play Services and so Google
Play Services must be enabled in order to use the apps, there
is no workaround to this.

In our tests we tried to configure the handset so that the
minimum possible data is shared with Google when using
the Exposure Notification service. Unless otherwise stated we
therefore disabled all Google apps on the handset (Chrome,
Drive, Gmail, Google, Google Play Movies, Google Play Mu-
sic, Google Play Store, Maps, Photos, YouTube) and Google
services (Actions Services, ARCore, Google Connectivity
Services, Google Support Services, Google Text-to-Speech
Engine, Google VR Services, Pixel Visual Core Services,
Project Fi). In the Settings→Google screen (which only ap-
pears when Google Play Services is enabled) we also disabled
all ‘Account Services (Connected App, Contact Sync, Google
Fit, Google Play Instant, Google Pay), Ad settings (Opt out
of ads personalisation, Enable debug logging for ads), Autofill
(Autofill with Google, SMS verification), Backup to Google
Drive, Data & Messaging (App preview messages), Device
Connections (Android Auto, Cast media controls), Parental
Controls, Security (Find My Device, Google Play Protect) and
Firebase App Indexing. The Covid-19 Exposure Notification
service is, of course, left enabled. On the Settings→Google
screen at the top right corner are three dots, which when
clicked open a menu with “Usage & diagnostics” and “Open
source licences”. Clicking on “Usage & diagnostics” opens
a screen with information on telemetry plus a toggle switch.
Although not hidden, this switch is far from prominent and
in fact we missed it on our initial passes through the Google
setting screen. Since the switch is on by default, and is not
so easy to find, we collected measurements both with it set
on and set off. A fresh gmail account is used to register the
device, which is not whitelisted for use with GAEN.

Our measurements of data shared with Google while using the
contact tracing apps are therefore an attempt at characterising
a minimal baseline. Additional data may well be shared in
practice if less restrictive Google settings are used.

E. Test Design

Test design is straightforward since the all of the apps support
only a single flow of user interaction. Namely, in all of the
apps there is an “onboarding” process that involves stepping
through a sequence of screens until the main screen is reached,
see Appendix A for details. Once the main screen is arrived
at this is displayed thereafter, see Figure 2 for some examples
of main screens. This main screen has typically has buttons
for help, sharing of the app, plus a button that is only to be

(a) SwissCovid (b) StoppCorona (c) CovidTracker

Fig. 2. Main screens displayed by three of the contact tracing apps following
initial setup.

pressed when the user has been confirmed as infected with
Covid-19.

Testing therefore consists of recording the data sent upon
installation and startup of the app, followed by navigation
through these screens until the main screen is reached. The
data sent by the app when left idle at the main screen (likely
the main mode of operation of the app) is also recorded. We
did not investigate the data sent upon pressing the upload func-
tion since we did not want to risk interfering with operation of
the live contact tracing service. A number of apps also have
symptom checking functions and we also left these untouched
to avoid interfering with the live service.

F. Finding Identifiers In Network Connections

Potential identifiers in network connections were extracted by
manual inspection. Basically any value present in network
messages that stays the same across messages is flagged as
a potential identifier. As we will see, many of the values of
interest are associated with Google Play Services. We therefore
try to find more information on the nature of observed values
from Google privacy policies and other public documents as
well as by comparing them against known software and device
identifiers e.g. the IMEI, hardware serial number, Google
advertising identifier of the handset.

IV. GOOGLE FIREBASE

ProteGO Safe and Apturi Covid both use Google’s Firebase
service, which is part of Google Play Services. This means that
there are at least two parties involved in handling data shared
by the app, namely Google (who operate the Firebase service
infrastructure) and the health authority (or other agency)
operating the client app. As owner of Firebase, Google has
access to all data transmitted by the app via Firebase but filters
what data is made available to the operator of the app e.g. to
present only aggregate statistics [19].

ProteGO Safe makes use of Firebase Remote Configuration
while Apturi Covid makes use of Firebase Analytics (also
referred to as Google Analytics for Firebase).

The Firebase privacy documentation [33] outlines some of the
information that is exchanged with Google during operation
of the API. Firebase Analytics makes use of a number of

6

identifiers including: (i) a user-resettable Mobile ad ID to
“allow developers and marketers to track activity for adver-
tising purposes. They’re also used to enhance serving and
targeting capabilities.” [34], (ii) an Android ID which is “a 64-
bit number (expressed as a hexadecimal string), unique to each
combination of app-signing key, user, and device” [35], (iii)
an InstanceID that ”provides a unique identifier for each app
instance” and ”Once an Instance ID is generated, the library
periodically sends information about the application and the
device where it’s running to the Firebase backend. ” [36] and
(iv) an Analytics App Instance ID that is “used to compute user
metrics throughout Analytics” [19]. The Firebase Analytics
documentation [19] states that “As long as you use the Firebase
SDK, you don’t need to write any additional code to collect
a number of user properties automatically”, including Age,
Gender, Interests, Language,Country plus a variety of device
information. It also states that “Analytics derives location data
from users’ IP addresses”.

The data collected by Google during operation of its Firebase
services need not be stored in the same country as the user of
an app is located. The Firebase privacy documentation [33]
states that “Unless a service or feature offers data location
selection, Firebase may process and store your data anywhere
Google or its agents maintain facilities”.

V. DATA TRANSMITTED BY CLIENT APPS

We begin by looking at the data shared by the client compo-
nent of the contact tracings apps, i.e. the component managed
by the public health authority of each country. The detailed
connection measurements are given in Appendix 2 and are
only summarised here.

A. CoronaWarn (Germany), SwissCovid (Switzerland), Im-
muni (Italy), StoppCorona (Austria), RadarCOVID (Spain),
SmitteStop (Denmark)

We treat these six apps together since they exhibit very similar
behaviour. In summary, they make a minimal number of
requests to back end servers and use no persistent identifiers.
Arguably, from a privacy viewpoint they therefore represent
best practice in the design of such client apps. We note that
SmitteStop and RadarCOVID are closed source while the other
apps are all open source [5], [7], [6], [8], and many of the
latter have benefited from public discussion via issue trackers
on github that identify potential improvements and ways to fix
deficiencies.
1) Data Sent On Initial Startup: With the exception of
SmitteStop, on first startup all of these apps connect to national
backend servers to download configuration settings and the
published exposure keys of infected people. The requests
contain no cookies or other identifiers linking them to the app
instance. StoppCorona requests do contain an authorization-
Key header but its value is the hard-wired into the app and is
the same for all instances, it therefore does not act to identify a
specific instance of the app. RadarCOVID downloads a UUID
value on start up but we did not observe this being sent back
to the server in subsequent requests (we speculate that it may

be used when uploading keys upon a positive diagnosis but,
as already noted, we did not check that functionality to avoid
interfering with operation of the live app).
2) Data Sent When Sitting Idle At Main Screen: When left
idle all of these apps periodically connect to national backend
servers to check for updates to their configuration settings and
the published exposure keys. These requests contain no app
instance identifiers5. SmitteStop also uploads log event data to
app.smittestop.dk/API/v1/logging/logMessages. We observed
this data to include stack traces and other information relating
to the operation of the app, but did not see evidence of
identifiers related to the app instance. Requests are made
relatively infrequently, no more than about 4 times a day.

B. ProteGO Safe (Poland)

ProteGO Safe makes use of the Google Firebase service to
store configuration settings, it also makes use of Google’s
SafetyNet service. This means that there are at least two
parties involved in handling data shared by the app, namely
Google (who operate the Firebase service infrastructure) and
the health authority (or other agency) operating the client
app. As owner of Firebase, Google has access to all data
transmitted by the app via Firebase but filters what data is
made available to the operator of the app e.g. to present only
aggregate statistics [19]. ProteGO Safe is open source [10].

We note that the use of Firebase by ProteGO Safe to store
configuration is perplexing. ProteGO Safe already uses a
separate server at exp.safesafe.app to publish keys of infected
people, so it would seem to be trivial to also use that server
to publish configuration settings and so avoid sharing of
data with Firebase. ProteGO Safe’s use of SafetyNet also
seems problematic. Firstly, ProteGO Safe does not respond
to the failure of our handset to pass the SafetyNet checks
and secondly checks are verified within the app itself, which
is not best practice since they can then be overridden (using
similar techniques to those we used to bypass certificate checks
on encrypted web traffic). Since SafetyNet use in the app is
therefore largely ineffective, it would be simpler to just avoid
using the service and thus avoid sending data to Google.
1) Data Sent On Initial Startup: ProteGO Safe initialises
Firebase upon first startup, which generates the following
POST request (standard/uninteresting parameters/headers are
omitted) :
POST https://firebaseinstallations.googleapis.com/v1/
projects/safesafe-app/installations
Headers:

X-Android-Package: pl.gov.mc.protegosafe
Request body:

"fid": "cY46N0YUR_ykuI0m_Bx-kz",

The “fid” value is the Firebase Instance ID. This uniquely
identifies the current instance of the app. The response to this
request echoes the fid value and includes two tokens which

5Requests made by SmitteStop contain an “Authorization Mobile” but its
value is hard-wired in the app and so is the same for all instances. SmitteStop
requests for updated configuration settings also send a cookie. The cookie
value appears, however, to be the same for all instances of the app. One
might speculate that these values originally changed per app instance but a
decision was taken later to fix them to be the same for all instances.

7

appear to be used to identify the current session. In a second
POST request ProteGO Safe sends the fid to android.clients.
google.com together with a persistent device identifier (likely
the androidID, which is set on first startup of a device and
only changes upon a factory reset).

ProteGO Safe now makes two calls to Google’s SafetyNet
service. The first call sends data that includes the handset
hardware serial number HT85G1A05... (a persistent identifier
of the handset):
POST https://www.googleapis.com/androidantiabuse/v1/x/create
Headers:

User-Agent: DroidGuard/202117028
Request body:

<...>
\x06SERIAL\x12\x0cHT85G1A05...\x12\x14
<...>

Note that our patched version of Google Play Services fails
the SafetyNet checks, but ProteGO Safe does not respond to
this failure. ProteGO Safe also carries out SafetyNet checks
within the app itself, where they can be overridden.

ProteGO Safe now fetches configuration information from
Firebase using:
POST https://firebaseremoteconfig.googleapis.com/v1/
projects/466787798978/namespaces/firebase:fetch
Request body:

<...>
"appInstanceId": "cY46N0YUR_ykuI0m_Bx-kz",
"appInstanceIdToken": "

cY46N0YUR_ykuI0m_Bx-kz:APA91...c",

The “appInstanceId” is a persistent identifier linked to the
specific instance of the app, the “appInstanceIdToken” is a
value returned by Firebase in response to earlier requests and
so can be linked to the fid and device and also acts to link
together requests made to Firebase.

ProteGO Safe makes a call to exp.safesafe.app to fetch details
of published keys. No persistent identifiers are sent with this
request.
2) Data Sent When Sitting Idle At Main Screen: Several times
a day ProteGO Safe fetches configuration information from
Firebase using similar requests as above, these include the ap-
pInstanceId and appInstanceIdToken headers. Less frequently
it also makes the call to exp.safesafe.app to fetch details of
published keys.

C. Apturi Covid (Latvia)

Apturi Covid makes use of the Google Firebase Analytics
service. This means that it shares data with Google servers
both on initial startup and afterwards while idle and that it
tracks user interactions with the app. There is no option to
opt out of this tracking. Apturi Covid is closed source.
1) Data Sent On Initial Startup: Similarly to ProteGO Safe,
on first startup Apturi Covid initialises Firebase and sends an
fid value to Google that uniquely identifies the current instance
of the app. It then sends a persistent device identifier along
with the fid value to android.clients.google.com.

Apturi Covid now makes its first call to Firebase Analytics:

POST https://app-measurement.com/a
<...>

\x02_o\x12\x04auto
\x17
\x04_cis\x12\x0freferrer API v2\x12\x04_cmp\x18\x96\x98\

xe6\xd9\xb1. \x00\x1a\x14\x08\xcd\xde\xe5\xd9\xb1.\x12\
x04_fot \x80\x8c\xa8\xdb\xb1.\x1a\x0e\x08\xcd\xde\xe5\xd9\
xb1.\x12\x03_fi \x01\x1a\x0f\x08\xac\xdf\xe5\xd9\xb1.\x12\
x04_sno \x01\x1a\x13\x08\xac\xdf\xe5\xd9\xb1.\x12\x04_sid \
xcf\xa6\x83\xf8\x05\x1a\x0f\x08\xb8\xe8\xe6\xd9\xb1.\x12\
x04_lte \x01\x1a\x0e\x08\xb8\xe8\xe6\xd9\xb1.\x12\x03_se \
x00 \xa4\xe8\xe6\xd9\xb1.(\xac\xdf\xe5\xd9\xb1.0\x96\x98\xe6
\xd9\xb1.8\xcd\xde\xe5\xd9\xb1.B\x07androidJ\x019R\x07Pixel
2Z\x05en-us‘<r\x17lv.spkc.gov.apturicovid\x82\x01\x061.0.47\
x88\x01\xe0\xda\x01\x90\x01\x85\xab\x0c\x9a\x01$
1d2635f5-2af7-4fb3-86e8-5fd6...\xa0\x01\x00\xaa\x01
f5fd7266cb7df65bdf87d6788d550c3e\xb0\x01\x84\x87\xdc\xaa\xf9
\xa3\xeb\xf6\xaa\x01\xb8\x01\x02\xca\x01-1:503076402814:
android:5d8cba16d971f6221aca2f\xd0\x01\xcd\xde\xe5\xd9\xb1.\
xe0\x01\x01\xf2\x01\x16c8WD_GfwSvWv89aGYrWd9d\xf8\x01/\x98\
x02\xec\xae\x99\x93\x80\x84\xea\x02\xe8\x02\xc8\xeb\x86\x0b\
xf0\x02

The payload includes the Google advertising id of the device
(1d2635f5-2af7-4fb3-86e8-5fd6...), the app instance id
(f5fd7266cb7df65bdf87d6788d550c3e) and the fid
(c8WD GfwSvWv89aGYrWd9d). Unless manually reset
by the user the value of the Google advertising id persists
indefinitely, including across fresh installs of Apturi Covid,
and so essentially acts as a strong identifier of the device and
its user.

Apturi Covid now makes calls to apturicovid-files.spkc.gov.
lv to fetch configuration settings, check for published keys
and fetch infection statistics. These requests do not contain
identifiers.
2) Data Sent When Sitting Idle At Main Screen: While idle
Apturi Covid makes fairly frequent calls to Firebase Analytics
to log data on user interactions with the app. As before, these
requests include he Google advertising id of the device, the
app instance id and the fid.

Apturi Covid also makes calls to apturicovid-files.spkc.gov.
lv to fetch configuration settings, check for published keys
and fetch infection statistics. As before, these requests do not
contain identifiers.

D. CovidTracker (Ireland)

CovidTracker makes use of Google’s SafetyNet service. On
startup it also connects to Google’s Firebase service - inspec-
tion of the code and discussion with the HSE confirmed this
is “path-not-taken” code and will hopefully be removed. The
app is open source [12] though the published code does not
enable certificate pinning whereas the released app does.
1) Data Sent On Initial Startup: Similarly to ProteGO Safe
and Apturi Covid, on first startup (before any user interaction)
CovidTracker initialises Firebase and sends an fid value to
Google that uniquely identifies the current instance of the app:
POST https://firebaseinstallations.googleapis.com/v1/
projects/api-7164394121131961544-290715/installations
Headers:

X-Android-Package: com.covidtracker.hse
Request body:

"fid": "do6qB-2BSDSRi2XLZIr-ul"

It then sends a persistent device identifier along with the fid
value to android.clients.google.com.

8

CovidTracker then downloads configuration settings from app.
covidtracker.ie. No identifiers are sent with this request.

Once the user navigates past the consent page within the app
CovidTracker makes a series of calls to Google’s SafetyNet
service, similarly to ProteGO Safe (although unlike ProteGO
Safe failure to pass the safety checks is not ignored). In these
calls the app sends the device hardware serial number to
Google:
POST
https://www.googleapis.com/androidantiabuse/v1/x/create
Headers:

User-Agent: DroidGuard/202117028
Request body:

<...>
\x06SERIAL\x12\x0cHT85G1A05...\x12\x14
<...>

At the end of this exchange the app.covidtracker.ie
server sends a “refreshToken” and a “token” value
to the app. The “token” value (eyJhbGciOiJI-
UzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k) is then sent
in the “Authorization: Bearer” header of subsequent requests
and so links these requests together.

Inspection of the app source code indicates that the refresh-
Token value effectively acts as a persistent identifier of the
app instance. It is used to request new token values from
the app.covidtracker.ie server, but these token values are
themselves linked by the refreshToken value.

Following this exchange CovidTracker checks for published
keys for infected people using:
GET https://app.covidtracker.ie/api/exposures/
Headers:
authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k
Parameters:

since: 0
limit: 1

and fetches information on Irish infection statistics:
GET https://app.covidtracker.ie/api/stats
Headers:

authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k

When the user has agreed to collection of telemetry data the
app also sends that to app.covidtracker.ie using calls such as:
POST https://app.covidtracker.ie/api/metrics
Headers:

authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k
Request body:

{ "event": "CALLBACK_OPTIN",
"os": "android",
"version": "1.0.40"}

The Data Protection Impact Assessment for the CovidTracker
app [17] states at the start of Section 4.3 that “IP addresses
of users are never transmitted from the networking layer to
the backend servers thus minimising the possibility of inadver-
tently recombining IP address and payload data”. Hence, while
requests are linked together by the “Authorization: Bearer”
header value that is sent with them this is not used to track
user location over time via the IP address. Nevertheless, while

such linking of requests may well be useful for symptom
checking functionality and the like, it seems unnecessary to
also link together the requests of users who have not opted in
to this. In particular, it seems unnecessary to link the requests
to app.covidtracker.ie/api/exposures/ used to check for new
published keys to each other and to other requests made by
the app.
2) Data Sent When Sitting Idle At Main Screen: Roughly
every two hours CovidTracker checks for updates to the
published keys for infected people using:
GET https://app.covidtracker.ie/api/exposures/
Headers:
authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k
Parameters:

since: 0
limit: 1

E. Certificate Pinning, DNSSEC & Mail

SSL certificate pinning allows apps to verify that they are se-
curely communicating with the correct server. Pinning involves
hardwiring server certificate details within the app, allowing
the app to confirm that the certificate presented to it by a server
is as expected and is not, for example, being spoofed by a
man-in-the-middle attacker. We verified that certificate pinning
is implemented by CoronaWarn, SwissCovid, StoppCorona,
Immuni, ProteGO Safe, Apturi Covid and CovidTracker. Cer-
tificate pinning is not, however, implemented by SmitteStop
or RadarCOVID, but we note that RadarCOVID is only being
being used in a pilot trial and the server domain names being
used also seem like they may be temporary ones; we presume
that pinning would be used in the production version. The
privacy impact of an absence of pinning is that the transactions
of users in, for example, an enterprise network using “Android
work” [16] or similar are vulnerable to being exposed to the
employer. The net effect for example could that the act of
uploading keys following a positive test phone call may be
logged by the employer’s network security devices.

DNSSEC is a standard data integrity mechanism that makes
attacks against the DNS service used to map from server
names to IP addresses much harder. Of all the DNS names
mentioned above, only two (exp.safesafe.app used by Pro-
tegGO Safe and www.pt.bfs.admin.ch used by SwissCovid) are
DNSSEC-signed. Given the sensitivity and scale ambitions for
contact tracing apps, and the fact that deploying DNSSEC is
not complex, we would have expected public health authorities
to have deployed all cost-effective security measures.

We also looked at the set of mail addresses that were hard-
coded into these apps or part of a downloadable configuration.
We assume these mail addresses provide users a means for
further contact and so are liable to receive messages with
sensitive content. The use and setup for transport layer security
(STARTTLS) for the relevant mail servers is therefore also
of interest. Not all apps appear to encourage use of email
though of course there may be email addresses on web pages
that we did not see. For those we found, none of the mail
servers support MTA-STS [37] and only one (rki.de) appears
to support DANE. [38] Of the rest, one (Italian, sanita.it) has

9

100 120 140 160 180 200 220

Time (mins)

0

0.5

1

1.5

2
C

o
n

n
e

c
ti
o

n

(a)

400 420 440 460 480 500 520

Time (mins)

0

0.5

1

1.5

2

C
o

n
n

e
c
ti
o

n

(b)

Fig. 3. Typical time histories of network connections made by Google Play
Services when (a) “Usage & diagnostics” option is on, and (b) when it is off.

no support for TLS at all. Of the two other Italian mail servers,
one (postacert.sanita.it) uses a certificate that may be self-
signed or signed by some local CA, another (immuni.italia.it)
uses a ciphersuite that is no longer recommended (DHE-
RSA-AES256-GCM-SHA384) and uses that with a too-short
Diffie-Hellman value (1024 bits). The Irish HSE mail servers
appear to use self-signed certificates for TLS and hence are
vulnerable to active MX spoofing attacks [39]. One of the
domains associated with the Polish app (mc.gov.pl) also uses
a self-signed certificate, whereas another (gis.gov.pl) appears
to have a clean setup. The German and Austrian apps seem
to be associated with mail addresses where the servers have a
clean-looking setup. Overall we can see that, as is often the
case with web applications, the linkage back to email security
has not been fully considered in many services.

VI. DATA TRANSMITTED BY GOOGLE PLAY SERVICES

As already noted, all of the contact tracing apps are formed
from two components, the client app and the Google/Apple
Exposure Notification service, that on Android devices is
managed by Google and is part of Google Play Services.

We tried to configure the handset so that the minimum possible
data is shared with Google when using the Exposure Notifi-
cation service, see Section III-D, and so our measurements of
data shared with Google should therefore be thought of as a
minimal baseline. To the best of our knowledge there is no way
to disable these connections other than by disabling Google
Play Services itself (Google have subsequently confirmed
this), but that would then prevent use of a GAEN-based contact
tracing app. The detailed connection measurements are given
in Appendix 2 and are only summarised here.

Figure 3 shows typical time histories of network connections
made by Google Play Services6. When the “Usage & di-
agnostics” option is on the mean time between connections
is 17.5 minutes, and when it is off the mean time between
connections increases slightly to 25 minutes. We also collected
measurements with the Google Play Store is enabled as well
as Google Play Services. We observed that the overall rate of
network connections is much the same but that Google Play
Services makes somewhat fewer connections, it seems that

6Each network connection is linked to the app which made it by running
the netstat command on the handset over an adb shell, and confirmed by
inspection of the connection contents which typically contain either a “User-
Agent” header or an “app” that indicates the app.

Google Play Services and Google Play Store therefore may
co-operate in some way to regulate the number of network
connections they jointly make.

The fact that Google Play Services connects to Google servers
so frequently is pertinent because every connection to a Google
server necessarily reveals the handset IP address. As already
noted, the handset IP address is a rough proxy for location
and so making connections every 20 minutes or so potentially
allows Google to track the handset location in quite a fine-
grained manner.

This is not a hypothetical concern. Google’s privacy policy
makes clear that it uses IP addresses to estimate location, see
the “Your location information” section on the Google Privacy
Policy document [18] and this is also stated explicit in the
Firebase documentation [19] which states that “As long as you
use the Firebase SDK, you don’t need to write any additional
code to collect a number of user properties automatically”,
including Age, Gender, Interests, Language,Country plus a
variety of device information, and that “Analytics derives
location data from users’ IP addresses”.

A. Connections to play.googleapis.com/p/log/batch

Google Play Services sends data to Google by making re-
quests to https://play.googleapis.com/p/log/batch several times
an hour. Each request is of the form:

POST https://play.googleapis.com/p/log/batch
Headers:

Authorization: Bearer ya29.a0AfH6SMCv...
X-SERVER-TOKEN: CAESKQDyi0h8u1NFMSbtIY...
Cookie: NID=204=cZfpA_V3EeVcgH8ON4DUR...
User-Agent: Android/com.google.android.gms/202117028 (

walleye PPR2.180905.005); gzip

The cookie, Authorization and X-SERVER-TOKEN headers
sent with this request all contain persistent identifiers that can
be used to link requests together and to the specific handset.

We observe a wide range of data being sent as the payload
to these requests, the payload often being quite large. This
includes information and telemetry on apps and services
installed on the handset, fine-grained details of errors logged
(including execution backtraces), details of network connec-
tion errors etc. In addition to the cookie, Authorization and
X-SERVER-TOKEN headers we also observed the handset
phone number (+353892197...) and the SIM serial number
(8935311180135555..) being sent:

\x80\xd3\x99\xfa\xb0.*\xa5\x1e\xee\x02\x08\x9f\xd6\xbe\xf7\
xb0.2\x7f\x12\x00\x1a(\x08\x88\xa0\xd5\x1c\x12 6.0.117 (
Xorn_RC10.phone_dynamic)"\x02

\x00\xb2\x01I
G\x08\x01\x10\x00\x18\x02"\x0527211*\x0c\x08\x01\x10\x02\

x1a\x06\x08\x01\x10\x01\x18\x012\x138935311180135555...:\x13
8935311180135555...H\x01\xd0\x01\x03X\x0ex\xa08\x88\x01\x85\
xec\xa5\x1d\x82\x01\xcd\x01\x12\xac\x01\x08\x03\x12\xa7\x
<...>
\xa3\xa4\xfa\x80\xb4.*\xbc[\x80\x03\x08\xed\xef\xea\xfd\xb3
.2\x8e\x01\x12\x00\x1a(\x08\xa8\x88\x91\x1d\x126.1.097 (
Yeti_RC11.phone_dynamic)"\x0f

+353892197...\xb2\x01K

10

When the“Usage & diagnostics” option is set on then telemetry
relating to the Exposure Notification service is also sent7, see
Appendix 2.

B. Connections to android.googleapis.com/checkin

A few times per day Google Play Services sends data to
Google by making a request to https://android.googleapis.com/
checkin:
POST https://android.googleapis.com/checkin
Headers:

Cookie: NID=204=Z-_RXuS4ZdrKlKkBoa...
User-Agent: Dalvik/2.1.0 (Linux; U; Android 9; Pixel 2

Build/PPR2.180905.005)
X-SERVER-TOKEN: CAESKQDyi0h8u1NFMSbtIY...

Request body:
<...>
2018-09-05\x10\xe8\xc3\xa7\x9d\xa3.2\x0527205:\x0527211B\
x06WIFI::H\x00p\x02z\x15\x08\x08\x10\x01\x1a\x0bunspecified
"\x00(\x00\x82\x01]

\x0527211\x12\x0cTesco Mobile\x1a\x010 \x00 \x01 \x022\
x0f272110103800000:(0
AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB\x02\x15\xe5\x90\x01
\x01\x9a\x01\x04WIFI2\x05en-US8\xfc\xa0\xab\xfb\xd7\xf6\xce\
x8d\xc9\x01J\x0c404e36d3f4bdR\x0f35753708924...Z\x1a[
<...>@gmail.com]Z\xc7\x02ya29.a0AfH6SMCv...

Europe/Dubliniv\xd4\xa3\x7f\x84\xb0\xf7;p\x03z\
x1cbfMkwynjHzXGBPc2WT62otR8JkI=\x82\x01\x0cHT85G1A05...\x92\
x01\x92\\\x08\x03\x10\x01\x18\x01 <...>

A cookie is sent with the request that is the same as
that sent with the play.googleapis.com/p/log/batch requests
thus allowing them to be linked together. Also sometimes
an X-SERVER-TOKEN header value (highlighted in bold
above) that matches that sent with the play.googleapis.com/
p/log/batch requests. The Authorization: Bearer header value
(ya29.a0AfH6SMCv...) sent with play.googleapis.com/p/log/
batch is also sometimes included in the request body. In addi-
tion, the payload contains the phone IMEI (35753708924...),
the hardware serial number (HT85G1A05...), the SIM se-
rial number (not shown in snippet above), the WiFi
MAC address (404e36d3f4bd) and the user email address
(<...>@gmail.com). These are all long-lived hardware identi-
fiers that do not change between reinstalls of the app or even
factory reset of the handset.

Using the data sent in these p/log/batch and checkin requests,
Google therefore gathers detailed, fine-grained information on
how the handset is being used and can link this data to the
handset hardware, SIM and user email. When combined with
the fine-grained location tracking via IP address made possible
by the frequent nature of the requests Google Play Services
makes to Google servers its hard to imagine a more intrusive
data collection setup. Recall that as far as we can tell this
data collection is enabled simply by installing Google Play
Services, even when all other Google services and settings
are disabled. It therefore appears to be unavoidable for users
of GAEN-based contact tracing apps.

Some may consider that the kind of data gathering by Google
described here is nothing new or unexpected and that mobile

7We have confirmed this with Google, who also advise that when the
“Usage & diagnostics” option is set off this Exposure Notification telemetry is
no longer sent. However, we continued to observe phone identifiers, including
the phone number and the SIM serial number, being sent in these requests
even when the “Usage & diagnostics” option is set off.

phone users have already factored in the risks of these kinds
of corporate surveillance. We believe there are at least three
reasons why this is an unsatisfactory response: a) governments
and public health authorities are strongly encouraging their
entire population to use these apps, and hence are (wittingly
or not) pressurising their entire populations to take part in this
corporate surveillance, b) it is highly likely that many users
and even app developers are unaware of the detail and the
level of intrusiveness described here and c) the lack of an opt
out from this data collection seems in conflict with GDPR.

C. Other Connections

Google Play Services also makes a number of other network
connections. These include an authorisation request, typically
made once or twice a day:
POST https://android.googleapis.com/auth
Headers:

device: 3e7736d127071c1a
app: com.google.android.gms
User-Agent: GoogleAuth/1.4 (walleye PPR2.180905.005);

gzip
Request body:

androidId: 3e7736d127071c1a
app: com.google.android.gms
Email: <...>@gmail.com
client_sig: 38918a453d07199354f8b19af05ec6562ced5788
Token: aas_et/AKppINaJgeUW3nalnMjiqfI8KVMmfTkO...g9w=
callerSig: 38918a453d07199354f8b19af05ec6562ced5788

Observe that this request sends the Android ID, a persistent
id which is unique to each combination of app-signing key,
user, and device” [35], see also Section IV. It also sends the
user gmail address.

A request is also made to www.googleapis.com/
experimentsandconfigs a few times a day. When the
“Usage & diagnostics” option is on this sends details of the
configuration of the Exposure Notification service.

D. Google Play Store Connections

Unless otherwise stated, in all of our measurements Google
Play Store was disabled. However, we also collected some
additional measurements with Google Play Store enabled,
since we expect that most users will use the Google Play
Store to install their contact tracing app (and likely leave it
always enabled in any case). Google Play Store can, however,
be disabled without interfering with operation of GAEN-based
contact tracing apps (although disabling Google Play Store
prevents app updates).

We generally observed that the payloads of Google Play
Store connections were less intrusive to privacy than the
Google Play Services connections noted above. Requests
often include an Authorization header than can be used to
link them together, and Google Play Store makes requests
to android.googleapis.com/auth and www.googleapis.com/
experimentsandconfigs that share similar data with Google
as those made by Google Play Services, although the www.
googleapis.com/experimentsandconfigs include in addition the
handset Google Advertising ID (a persistent identifier used for
personalised advertising, which can be manually reset by the
user but otherwise remains unchanged indefinitely).

11

E. Recommendations With Respect To Google Play Services

We recognise that Google Play Services is an extremely
widely-used software component and so may not be easily
modified. It may also be that changes to make Google Play
Services more suitable for use with GAEN apps make it less
suited for current commercial purposes, however we recom-
mend three potential avenues to help mitigate the intrusiveness
documented above.

Firstly, there is a significant lack of documentation as to the
internals of the GAEN implementation and of the other parts of
Google Play Services needed for apps to operate. In particular,
usable documentation as to how to make Google Play Services
behave in as privacy-friendly a manner as possible while
using a GAEN app should assist public health authorities
in supporting informed decision-making for their users and
potential users. We are aware of no such documentation. We
have been informed that Google and Apple themselves are
aware of and plan to address this issue, hopefully in the very
near future.

Secondly, Google could implement a “quiet mode” mechanism
that enables users who find the Google Play Services data
sharing with Google problematic to easily turn that off. That
should assist a cohort of privacy-conscious users who might
not otherwise adopt GAEN apps.

Thirdly, public health authorities, civil societies and others
could, along with Google and Apple, revisit the governance
issues associated with the GAEN system overall. While the
involvement of Google and Apple seems entirely necessary
(for their handset expertise at least), the current situation where
Google and Apple are essentially gatekeepers who are in ulti-
mate control of the behaviour of these apps seems undesirable.
A governance setup that imposes a similar level of scrutiny
over both the client app component and the Google/Apple
component of the GAEN system seems sensible and necessary.

VII. CONCLUSIONS

We describe the data transmitted to backend servers by
the contact tracing apps now deployed in Germany, Italy,
Switzerland, Austria, Denmark, Spain, Poland, Latvia and
Ireland with a view to evaluating user privacy. These apps
consist of two separate components: a “client” app managed
by the national public health authority and the Google/Apple
Exposure Notification service, that on Android devices is
managed by Google and is part of Google Play Services.
We find that the health authority client apps are generally
well behaved from a privacy point of view, although the
privacy of the Irish, the Polish and Latvian apps could be
improved. In marked contrast, we find that the Google Play
Services component of these apps is extremely troubling from
a privacy viewpoint. Google Play Services contacts Google
servers roughly every 20 minutes, poentially allowing fine-
grained location tracking via IP address. In addition, Google
Play services also shares the phone IMEI, hardware serial
number, SIM serial number, handset phone number and user
email address with Google, together with fine-grained data
on the apps running on the phone. This data collection

is enabled simply by enabling Google Play Services, even
when all other Google services and settings are disabled. It
therefore appears to be unavoidable for users of GAEN-based
contact tracing apps on Android. This level of intrusiveness
seems incompatible with a recommendation for population-
wide usage. It also seems incompatible with the following
statement from Google: ”We understand that the success of
this approach depends on people feeling confident that their
private information is protected. The Exposure Notifications
System was built with your privacy and security central to the
design. Your identity is not shared with other users, Google or
Apple.”8 We note the health authority client app component of
these contact tracing apps has generally received considerable
public scrutiny and typically has a Data Protection Impact
Assessment, whereas no such public documents exist for the
GAEN component of these apps. Extending public governance
to the full contact tracing ecosystem, not just of the health
authority client app component, therefore seems to be urgently
needed if public confidence is to be maintained.

ACKNOWLEDGEMENTS

Trinity College Dublin, (the authors’ employer) funded the
“Testing Apps for Contact Tracing” (TACT) project9 that has
allowed us the time and handsets required here.

REFERENCES

[1] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-
Dörner, M. Parker, D. Bonsall, and C. Fraser, “Quantifying sars-cov-
2 transmission suggests epidemic control with digital contact tracing,”
Science, 2020.

[2] Irish Times, “EU urges vigilance to avoid coro-
navirus second wave,” 17 May 2020. [On-
line]. Available: https://www.irishtimes.com/news/world/europe/
eu-urges-vigilance-to-avoid-coronavirus-second-wave-1.4255632

[3] “Apple and Google partner on COVID-19 con-
tact tracing technology,” 10 April, 2020. [On-
line]. Available: https://www.apple.com/newsroom/2020/04/
apple-and-google-partner-on-covid-19-contact-tracing-technology/

[4] Google Blog, “Exposure Notification API launches to support
public health agencies,” Accessed 13 June 2020. [Online].
Available: https://blog.google/inside-google/company-announcements/
apple-google-exposure-notification-api-launches/

[5] “CoronaWarnApp Source Code,” Accessed 9 July 2020. [Online].
Available: https://github.com/corona-warn-app

[6] “Immuni Source Code,” Accessed 9 July 2020. [Online]. Available:
https://github.com/immuni-app

[7] “SwissCovid Source Code,” Accessed 9 July 2020. [Online]. Available:
https://github.com/DP-3T/dp3t-app-android-ch

[8] “StoppCorona Source Code,” Accessed 9 July 2020. [Online]. Available:
https://github.com/austrianredcross/stopp-corona-android

[9] “SmitteStop App,” Accessed 12 July 2020. [Online]. Available:
https://smittestop.dk/

[10] “ProteGO Safe Source Code,” Accessed 9 July 2020. [Online].
Available: https://github.com/ProteGO-Safe/android

[11] “Apturi Covid App,” Accessed 9 July 2020. [Online]. Available:
https://apturicovid.lv/

8https://www.google.com/covid19/exposurenotifications/ accessed 13th July
2020.

9See https://down.dsg.cs.tcd.ie/tact/

12

[12] “CovidTracker Source Code,” Accessed 9 July 2020. [Online].
Available: https://github.com/HSEIreland

[13] “Radar COVID App, Google Play Store,” Accessed 12 July
2020. [Online]. Available: https://play.google.com/store/apps/details?
id=es.gob.radarcovid

[14] “Exposure Notifications: Android API Documentation,” accessed
6 June 2020. [Online]. Available: https://static.googleusercontent.
com/media/www.google.com/en//covid19/exposurenotifications/pdfs/
Android-Exposure-Notification-API-documentation-v1.3.2.pdf

[15] D. Leith and S. Farrell, “GAEN Due Diligence: Verifying
The Google/Apple Covid Exposure Notification API,” 16 June
2020. [Online]. Available: https://www.scss.tcd.ie/Doug.Leith/pubs/
gaen verification.pdf

[16] “Android Work,” Accessed 11 July 2020. [Online]. Available:
https://developers.google.com/android/work/

[17] “CovidTracker Data Protection Impact Assessment,” 26
June 2020. [Online]. Available: https://github.com/HSEIreland/
covidtracker-documentation/blob/master/documentation/privacy/
DataProtectionImpactAssessmentfortheCOVIDTrackerApp-26.06.
2020.pdf

[18] “Google Privacy Policy,” Accessed 9 July 2020. [Online]. Available:
https://policies.google.com/privacy

[19] “Firebase Help: Automatically collected user properties,” Accessed
26 April 2020. [Online]. Available: https://support.google.com/firebase/
answer/6317486

[20] A. Crocker, K. Opsahl, and B. Cyphers, “The Challenge of Proximity
Apps For COVID-19 Contact Tracing, Electronic Frontier Foundtion,”
10 April 2020. [Online]. Available: https://www.eff.org/deeplinks/2020/
04/challenge-proximity-apps-covid-19-contact-tracing

[21] R. Anderson, “Contact Tracing in the Real World,” 12 April
2020. [Online]. Available: https://www.lightbluetouchpaper.org/2020/
04/12/contact-tracing-in-the-real-world/

[22] D. Leith and S. Farrell, “Coronavirus Contact Tracing: Evaluating
The Potential Of Using Bluetooth Received Signal Strength For
Proximity Detection,” 6 May 2020. [Online]. Available: https:
//arxiv.org/abs/2006.06822

[23] ——, “Measurement-Based Evaluation Of Google/Apple Exposure
Notification API For Proximity Detection In A Commuter Bus,”
15 June 2020. [Online]. Available: https://www.scss.tcd.ie/Doug.Leith/
pubs/bus.pdf

[24] ——, “Measurement-Based Evaluation Of Google/Apple Exposure
Notification API For Proximity Detection In A Light-Rail Tram,”
26 June 2020. [Online]. Available: https://www.scss.tcd.ie/Doug.Leith/
pubs/luas.pdf

[25] “BLOKADA Firewall,” Accessed 11 July 2020. [Online]. Available:
https://blokada.org/

[26] “F-Droid,” Accessed 11 July 2020. [Online]. Available: https:
//f-droid.org/

[27] L. Sweeney, “k-anonymity: A model for protecting privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, 2002.

[28] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam,
“l-diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowl-
edge Discovery from Data (TKDD), vol. 1, no. 1, pp. 3–es, 2007.

[29] G. P. and P. K, “On the Anonymity of Home/Work Location Pairs,” in
Pervasive Computing, 2009.

[30] M. Srivatsa and M. Hicks, “Deanonymizing mobility traces: Using social
network as a side-channel,” in Proceedings of the 2012 ACM conference
on Computer and communications security, 2012, pp. 628–637.

[31] A. Cortesi, M. Hils, T. Kriechbaumer, and contributors, “mitmproxy: A
free and open source interactive HTTPS proxy (v5.01),” 2020. [Online].
Available: https://mitmproxy.org/

[32] “Frida: Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers,” Accessed 26 April 2020. [Online].
Available: https://frida.re/

[33] “Privacy and Security in Firebase,” 27 Nov 2019. [Online]. Available:
https://firebase.google.com/support/privacy

[34] “Google Ad Manager Help: About mobile advertising IDs,” Accessed 26
April 2020. [Online]. Available: https://support.google.com/admanager/
answer/6274238

[35] “Android Reference Guide: Android Id,” Accessed 26 April 2020.
[Online]. Available: https://developer.android.com/reference/android/
provider/Settings.Secure.html#ANDROID ID

[36] “Firebase Reference Guide: FirebaseInstanceId,” Accessed 26 April
2020. [Online]. Available: https://firebase.google.com/docs/reference/
android/com/google/firebase/iid/FirebaseInstanceId

[37] D. Margolis, M. Risher, B. Ramakrishnan, A. Brotman, and J. Jones,
“SMTP MTA Strict Transport Security (MTA-STS),” RFC 8461
(Proposed Standard), RFC Editor, Fremont, CA, USA, Sep. 2018.
[Online]. Available: https://www.rfc-editor.org/rfc/rfc8461.txt

[38] P. Hoffman and J. Schlyter, “The DNS-Based Authentication of Named
Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA,”
RFC 6698 (Proposed Standard), RFC Editor, Fremont, CA, USA,
Aug. 2012, updated by RFCs 7218, 7671, 8749. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6698.txt

[39] Z. Durumeric, D. Adrian, A. Mirian, J. Kasten, E. Bursztein,
N. Lidzborski, K. Thomas, V. Eranti, M. Bailey, and J. A. Halderman,
“Neither snow nor rain nor mitm... an empirical analysis of email
delivery security,” in Proceedings of the 2015 Internet Measurement
Conference, 2015, pp. 27–39.

APPENDIX A: APP ONBOARDING FLOW

We observed the following onboarding flows for each of the
apps studied (the onboarding flow may, of course, change with
future app updates).

A. CoronaWarnApp

Initial “Let’s Get Started” screen, then “Data Privacy” screen,
then “Activate Exposure Logging” button, then “If you are
diagnosed” screen, “Receive warnings” screen and finally
arrive at main screen. Main screen has a “Risk Status” button,
a “Notify and help” button and a “FAQ” button. It also has a
menu with Overview, App Information and Settings options.

B. SwissCovid

Initial “Staying one step ahead of the virus” screen, then
“Protection of privacy“ screen, then “Recognising encounters
using bluetooth“, then “Report of potential infection”, then
“Tips on use“ screen with a link to a data protection statement,
a warning that the app does not protect against covid-19
infection and an “Accept” button. Next screen is “Allow
battery optimisation”, then “Activate proximity tracing”, then
an “The app is ready to go“ screen with a ”Start” button.
Pressing this button leads to the main screen. The main screen
has an “Encounters” button, a “Reports” button, a “What to do
if .. symptoms of the disease” button and a “What to do if ...
you test positive” button. The “Encounters” button leads to a
screen with a toggle to enable/disable proximity tracing and a
“FAQS” button, the “Reports” button leads to an information
screen with a a “FAQS” button, and similarly the “What to
do if .. symptoms of the disease”. The “What to do if ...
you test positive” button leads to a screen with an “Enter the
covidcode” button.

13

C. Immuni

Initial “Hi!” screen, then an “Immuni takes care of you”
screen, then a “Slowing down the epidemic together” screen,
then a “Your privacy is protected” screen with a “Let’s get
started” button. Pressing button moves to a “Your privacy is
safe” screen and then to a screen with two tick boxes, one
“I declare that I am at least 14 years old” and one “I have
read the privacy notice”. Ticking these and clicking the “Next”
button transitions to ‘ ”Which region do you live in?” screen
with a list of Italian regions (one needs to be selected before
the “Next” button can be clicked), then to ‘ “Which province
do you live in” screen (again, one needs to be selected in
order to proceed) and then to a “Enable COVID-19 exposure
notifications” screen with an “Enable” button. Clicking that
takes one to a “Protect your device screen” with a “Got
it” button, then to a “Watch out for scam messages screen”
with a “Got it” button and finally to the main screen. The
main screen has several “Find out more” buttons, a “Disable
the service” button and “Home” and “Settings” buttons. The
home button opens the main screen, the settings button opens
a screen with the options to “Report a positive result” and
with “FAQ”, “Terms of use”,“Privacy notice”, “Change your
province“, “Leave a review” and “Contact support” buttons.

D. StoppCorona

Initial “Welcome” screen, then a “Digital Handshake” screen,
then a “Check Symptoms” screen, then a “Notification in the
event of illness” screen, then a “Thank you for using the
app!” screen. The next screen is “Declaration of consent”
and has an “I consent” tick box and a “Finished button”.
Ticking the box and clicking the button leads to a “What’s
new?” page with an “All right!” button. Clicking the button
turns on exposure notifications and leads to the main screen.
The main screen has a toggle to enable/disable “Automatic
handshake”, a “Share the app!” button, a “Check symptoms”
button and a “Report medical confirmation” button. It also
has a drop down menu with “Examine symptoms”, “Report
medical confirmation”, “Share app”, “What can this app do”,
“FAQ”, “More about coronavirus”, “Saved IDs”, “Open source
licenses”, “Data privacy” and “Imprint” buttons.

E. RadarCOVID

RadarCovid is Spanish language only. The initial welcome
screen has a “Continuar” button that leads to a consent page
with an acceptance box that must be ticked in order to proceed.
The next page has an activate bluetooth button, and pressing
that leads to the main screen. The main screen has a toggle
switch to enable/disable exposure notifications, a button to be
pressed when tested positive with Covid-19 and an information
button. Icon buttons at the bottom of the screen link to data
privacy information and a contact phone number.

F. SmitteStop

SmitteStop is Danish language only. The initial screen dis-
plays a “start” button, leading to a sequence of screens with
“Naeste” buttons. The last screen has a toggle switch to give

consent “Godkend samtykke” that needs to be enabled in
order to proceed. The next screen displays a popup asking
to enable exposure notifications, and clicking ok leads to the
main screen. The main screen has a button to enable/disable
exposure notifications, a button to display notifications and a
button to report a positive test. There is also a drop down
menu with various information.

G. ApturiCovid

Initial “ApturiCovid” screen with the option to select Latvian,
English and Russian and a tick box. Selecting English, the
tick box is “I accept App terms of use and have read the
Privacy policy”, with links to terms of use and privacy policy.
Ticking this box enables the “Next” button which leads to
a “Contact detection” screen with a “Switch on” toggle that
says it can be switched on later. Leaving it off and clicking
the “Next” button generates a popup asking to “Continue
without switching on contact detection”. Clicking the toggle
on changes the display to allow a phone number to be entered
and to display a “I will not provide a number” button. Clicking
that generates a warning popup, clicking “Yes” to that then
leads to the main screen. The main screen has a toggle to
enable/disable “Contact detection”, a “Share app” button, a
“Home” button and three icon buttons that display infection
statistics for Latvia, open a FAQ screen and open a settings
screen with the options to “Enter SPKC code”, provide a phone
number and a toggle to enable/disable “Notify me if contact
detection gets switched off”.

H. ProteGO Safe

ProteGO Safe is Polish language only. The initial screen
displays a popup with an “Ok” button, clicking this closes
it. The initial screen leads through five information screens
and then to a screen with a tick box that looks like a consent
request. Ticking this box and proceeding leads to a page with a
text entry box and two buttons, clicking on leads to a page with
two buttons and then to the main page. Clicking the button
at the top of the main page enables exposure notifications.
The main page appears to have a button to be clicked on
receiving a positive infection result, a “Home” button, two
information/FAQ buttons and a settings button.

I. CovidTracker

Initial “CovidTracker” screen has an “I am 16 or older” button
and a “I am under 16” button. Clicking the ‘I am 16 or older”
button leads to a screen with information, a link to terms and
conditions and a “Get started” button. Clicking “Get started”
leads to a “Your data” screen, scrolling to the bottom shows
a “Continue” button. Clicking this leads to an “App Metrics”
page with “Yes, I consent” and “No thanks” buttons. Clicking
“No thanks” leads to a “Contact Tracing” page where clicking
“Continue” enables exposure notifications and then leads to a
“Contact Tracing follow-up call” screen that allows a phone
number to be entered and has “Yes, I want to opt-in” and
“No thanks” buttons. Clicking “No thanks” leads to the main
page. The main page has a “COVID Check-In” button, a “The

14

national picture” button and “Updates”, “COVID Check-In”,
“Contact Tracing” and “Share app” buttons along the bottom
and a “Settings” button at the top. The “Updates” leads to
the main screen, the “COVID Check-In” button to a symptom
checking page with a “Yes, I’d like to use COVID Check-
In” button, the “Contact Tracing” button leads to a page with
“Share app”, “Close contact information” and “Upload your
Random IDs” buttons. The “Settings” button opens a page
with “Contact Tracing”, “COVID Check-In”, “Data Protection
Information Notice”, “Term & Conditions”, “App Metrics” and
“Leave” buttons.

APPENDIX B: CONTENT OF NETWORK CONNECTIONS

Note that to save space HTTP headers and parameters with
uninteresting content are not shown. Probable persistent iden-
tifiers are highlighted in bold.

I. CORONAWARNAPP (GERMANY) CONNECTIONS

A. On First StartUp
GET https:
//svc90.main.px.t-online.de/version/v1/configuration/country/DE/app config

This call is made on first startup of the app, without further user
interaction. Response is application/octet-stream containing a protobuf.
Once decoded it contains:

minRiskScore: 11
riskScoreClasses {

risk classes {label: ”LOW” max: 15 url: ”https://www.coronawarn.app”}
risk classes {label: ”HIGH” min: 15 max: 72 url: ”https://www.

coronawarn.app”}
}
exposureConfig {

transmission {
appDefined 1: LOWEST appDefined 2: LOW
appDefined 3: LOW MEDIUM appDefined 4: MEDIUM
appDefined 5: MEDIUM HIGH appDefined 6: HIGH
appDefined 7: VERY HIGH appDefined 8: HIGHEST
}
transmissionWeight: 50.0
duration {

gt 10 le 15 min: LOWEST gt 15 le 20 min: LOWEST
gt 20 le 25 min: LOWEST

gt 25 le 30 min: LOWEST gt 30 min: LOWEST
}
durationWeight: 50.0
daysSinceLastExposure {

ge 14 days: MEDIUM HIGH ge 12 lt 14 days: MEDIUM HIGH
ge 10 lt 12 days: MEDIUM HIGH ge 8 lt 10 days:

MEDIUM HIGH
ge 6 lt 8 days: MEDIUM HIGH ge 4 lt 6 days: MEDIUM HIGH
ge 2 lt 4 days: MEDIUM HIGHge 0 lt 2 days: MEDIUM HIGH
}
daysWeight: 20.0
attenuation {

gt 63 le 73 dbm: LOWEST gt 51 le 63 dbm: LOWEST
gt 33 le 51 dbm: LOWEST gt 27 le 33 dbm: LOWEST
gt 15 le 27 dbm: LOWEST gt 10 le 15 dbm: LOWEST
lt 10 dbm: LOWEST
}
attenuationWeight: 50.0
}
attenuationDuration {

thresholds {lower: 55 upper: 63 }
weights{ low: 1.0 mid: 0.5 }
riskScoreNormalizationDivisor: 25
}
appVersion {

ios {latest { minor: 8 patch: }
min {minor: 5}}

android {latest {minor: 8 patch: 3}
min {minor: 8} }

}

GET
https://svc90.main.px.t-online.de/version/v1/diagnosis-keys/country/DE/date

Response is
[”2020-06-23”,”2020-06-24”,”2020-06-25”,”2020-06-26”,”2020-06-
27”,”2020-06-28”,”2020-06-29”,”2020-06-30”,”2020-07-01”,”2020-07-02”]

GET https://svc90.main.px.t-online.de/version/v1/diagnosis-
keys/country/DE/date/2020-06-23

Response is zipped TEK files. This request is followed by a sequence of
similar requests, one for each of the dates given.

B. Connections When Idle
GET https:
//svc90.main.px.t-online.de/version/v1/configuration/country/DE/app config

This connectiion is typically made when the app is brought to the
foreground. Response is 304 Not Modified

About once a day there is a call to check for new TEKs:

GET
https://svc90.main.px.t-online.de/version/v1/diagnosis-keys/country/DE/date

Response is a list of dates, and TEKs for new dates are fetched using a
GET to https://svc90.main.px.t-online.de/version/v1/diagnosis-
keys/country/DE/date/<date>

II. SWISSCOVID (SWITZERLAND) CONNECTIONS

A. On First StartUp
GET https://www.pt.bfs.admin.ch/v1/config
Parameters:

appversion: android−1.0.5
osversion: android28
buildnr: 1592520999206

Response is json:
{

”androidGaenSdkConfig”: {
”factorHigh”: 0.5,
”factorLow”: 1.0,
”higherThreshold”: 55,
”lowerThreshold”: 50,
”triggerThreshold”: 15

},
”forceTraceShutdown”: false,
”forceUpdate”: false,
”iOSGaenSdkConfig”: {

”factorHigh”: 0.5,
”factorLow”: 1.0,
”higherThreshold”: 55,
”lowerThreshold”: 50,
”triggerThreshold”: 15

},
”infoBox”: null,
”iosgaenSdkConfig”: {

”factorHigh”: 0.5,
”factorLow”: 1.0,
”higherThreshold”: 55,
”lowerThreshold”: 50,
”triggerThreshold”: 15

},
”sdkConfig”: {

”badAttenuationThreshold”: 73.0,
”contactAttenuationThreshold”: 73.0,
”eventThreshold”: 0.8,
”numberOfWindowsForExposure”: 3

}
}

15

GET https://www.pt.bfs.admin.ch/v1/gaen/exposed/1593561600000

Response is zipped TEK files. This request is followed by a series of similar
requests of the form GET
https://www.pt.bfs.admin.ch/v1/gaen/exposed/<time>. Here <time> is the
time, in seconds since 1st jan 1970, at midnight GMT and each request is
for a different day.

B. Connections When Idle
GET https://www.pt.bfs.admin.ch/v1/config
Parameters:

appversion: android−1.0.5
osversion: android28
buildnr: 1592520999206

Response is json, as above.

A pair of calls checks for new TEKs:

GET https://www.pt.bfs.admin.ch/v1/gaen/exposed/¡time¿

GET https://13.224.68.88/v1/gaen/exposed/1593561600000
Parameter:

publishedafter: 1593633600000

Response is zipped TEK files

III. IMMUNI (ITALY) CONNECTIONS

A. On First StartUp
GET https://get.immuni.gov.it/v1/settings
Parameters:

platform: android
build: 1203309

Response is json:
{ ”dummy analytics waiting time”: 2592000,

”dummy teks average opportunity waiting time”: 5184000,
”dummy teks average request waiting time”: 10,
”dummy teks average start waiting time”: 15,
”dummy teks request probabilities”: [0.95, 0.1],
”dummy teks window duration”: 1209600,
”experimental phase”: false,
”exposure configuration”: {

”attenuation bucket scores”: [0,5,5,5 5,5,5,5],
”attenuation thresholds”: [50,70],
”attenuation weight”: 1,
”days since last exposure bucket scores”: 1,1,1,1,1,1,1,1],
”days since last exposure weight”: 1,
”duration bucket scores”: [0,0,0,0,5,5,5,5],
”duration weight”: 1,
”minimum risk score”: 1,
”transmission risk bucket scores”: [1,1,1,1,1,1,1,1],
”transmission risk weight”: 1},

”exposure detection period”: 14400,
”exposure info minimum risk score”: 20,
”faq url”: {”de”: ”https://get.immuni.gov.it/docs/faq−de.json”,

”en”: ”https://get.immuni.gov.it/docs/faq−en.json”,
”es”: ”https://get.immuni.gov.it/docs/faq−es.json”,
”fr”: ”https://get.immuni.gov.it/docs/faq−fr.json”,
”it”: ”https://get.immuni.gov.it/docs/faq−it.json” },

”maximum exposure detection waiting time”: 86400,
”minimum build version”: 1,
”onboarding not completed notification period”: 86400,
”operational info with exposure sampling rate”: 1,
”operational info without exposure sampling rate”: 0.6,
”pn url”: { ”de”: ”https://www.immuni.italia.it/app−pn.html”,

”en”: ”https://www.immuni.italia.it/app−pn.html”,
”es”: ”https://www.immuni.italia.it/app−pn.html”,
”fr”: ”https://www.immuni.italia.it/app−pn.html”,
”it”: ”https://www.immuni.italia.it/app−pn.html”},

”required update notification period”: 86400,
”risk reminder notification period”: 86400,

”service not active notification period”: 86400,
”support email”: ”cittadini@immuni.italia.it”,
”support phone”: ”800912491”,
”support phone closing time”: ”22”,
”support phone opening time”: ”7”,
”teks max info count”: 600,
”teks max summary count”: 84,
”teks packet size”: 110000,
”tou url”: { ”de”: ”https://www.immuni.italia.it/app−tou.html”,

”en”: ”https://www.immuni.italia.it/app−tou.html”,
”es”: ”https://www.immuni.italia.it/app−tou.html”,
”fr”: ”https://www.immuni.italia.it/app−tou.html”,
”it”: ”https://www.immuni.italia.it/app−tou.html”}

}

GET https://get.immuni.gov.it/docs/faq-en.json

Response is json containing FAQ text.

GET https://get.immuni.gov.it/v1/keys/index

Response is json:
{ ”newest”: 19,

”oldest”: 9}

GET https://get.immuni.gov.it/v1/keys/9

Response is zipped TEKs. This is followed by a sequence of similar GET
requests to get.immuni.gov.it/v1/keys/<number> where counts from the
oldest to newest value in previous response.

B. Connections When Idle
Immuni does not generate new connections upon being brought to the
foreground. Instead, roughly every 6 hours the app repeats the following
calls:

GET https://get.immuni.gov.it/v1/settings
Parameters:

platform: android
build: 1203309

GET https://get.immuni.gov.it/docs/faq-en.json

GET https://get.immuni.gov.it/v1/keys/index

And fetches any new zipped TEK files using GET requests to
get.immuni.gov.it/v1/keys/<number>

IV. STOPPCORONA (AUSTRIA) CONNECTIONS

A. On First StartUp
GET https://app.prod-rca-coronaapp-fd.net/Rest/v8/configuration
Headers:

authorizationkey: 64165cfc5a984...
x−appid: at.roteskreuz.stopcorona

The authorizationkey header value is hard-wired in the app and so is the
same for all instances of the app. The response is json which includes
question text and the following configuration settings:

”exposure configuration”: {
”attenuation duration thresholds”: [33,63],
”attenuation level values”: [0,1,2,2,8,8,8,8],
”daily risk threshold”: 7,
”days since last exposure level values”: [1,1,1,1,1,1,1,1],
”duration level values”: [0,1,2,3,4,5,6,7],
”minimum risk score”: 1,
”transmission risk level values”: [1,1,1,1,1,1,1,1]

},

GET https://cdn.prod-rca-coronaapp-fd.net/exposures/at/index.json
Headers:

authorizationkey: 64165cfc5a984...
x−appid: at.roteskreuz.stopcorona

Response is json:

16

{”full 14 batch”:{”interval”:2654928,”batch file paths”:[”/exposures/at
/1594235700/batch full14−2654928−1.zip”]},”full 7 batch”:{”interval
”:2655936,”batch file paths”:[”/exposures/at/1594235700/batch full7
−2655936−1.zip”]},”daily batches”:[{”interval”:2655936,”batch file paths
”:[”/exposures/at/1594235700/batch−2655936−1.zip”]},{”interval
”:2656080,”batch file paths”:[”/exposures/at/1594235700/batch
−2656080−1.zip”]},{”interval”:2656224,”batch file paths”:[”/exposures/at
/1594235700/batch−2656224−1.zip”]},{”interval”:2656368,”
batch file paths”:[”/exposures/at/1594235700/batch−2656368−1.zip”]},{”
interval”:2656512,”batch file paths”:[”/exposures/at/1594235700/batch
−2656512−1.zip”]},{”interval”:2656656,”batch file paths”:[”/exposures/at
/1594235700/batch−2656656−1.zip”]},{”interval”:2656800,”
batch file paths”:[”/exposures/at/1594235700/batch−2656800−1.zip”]},{”
interval”:2656944,”batch file paths”:[”/exposures/at/1594235700/batch
−2656944−1.zip”]}]}

GET https://cdn.prod-rca-coronaapp-fd.net/exposures/at/1594235700/batch
full14-2654928-1.zip
Headers:

authorizationkey: 64165cfc5a984bb...
x−appid: at.roteskreuz.stopcorona

Response is a zipped TEK file.

B. Connections When Idle
A few times a day the app makes requests to check for new published TEKs:

GET https://cdn.prod-rca-coronaapp-fd.net/exposures/at/index.json
Headers:

authorizationkey: 64165cfc5a984bb...
x−appid: at.roteskreuz.stopcorona

GET https://cdn.prod-rca-coronaapp-fd.netexposures/at/1594275300/batch
full14-2655072-1.zip
Headers:

authorizationkey: 64165cfc5a984bb...
x−appid: at.roteskreuz.stopcorona

V. RADARCOVID (SPAIN) CONNECTIONS

A. On First StartUp
On first startup the app fetches configuration settings:

GET https://dqarr2dc0prei.cloudfront.net/configuration/settings

The response is json:
{ ”applicationVersion”: {

”android”: {
”bundleUrl”: ”https://play.google.com/store/apps/details?id

=es.gob.radarcovid”,
”compilation”: 3,
”version”: ”1.0.0”},

”ios”: {”bundleUrl”: ”itms://itunes.apple.com/app/
id1520443509”,

”compilation”: 0,
”version”: ”1.0.0”}},

”attenuationDurationThresholds”: { ”low”: 53,”medium”: 60},
”attenuationFactor”: {”low”: 1.0,”medium”: 0.5 },
”exposureConfiguration”: {

”attenuation”: {
”riskLevelValue1”: 1,”riskLevelValue2”: 1,
”riskLevelValue3”: 1,”riskLevelValue4”: 1,
”riskLevelValue5”: 1,”riskLevelValue6”: 1,
”riskLevelValue7”: 1,”riskLevelValue8”: 1,
”riskLevelWeight”: 100.0,

”days”: {
”riskLevelValue1”: 0,”riskLevelValue2”: 0,
”riskLevelValue3”: 0,”riskLevelValue4”: 0,
”riskLevelValue5”: 0,”riskLevelValue6”: 0,
”riskLevelValue7”: 0,”riskLevelValue8”: 0,
”riskLevelWeight”: 0.0},

”duration”: {
”riskLevelValue1”: 0,”riskLevelValue2”: 0,
”riskLevelValue3”: 0,”riskLevelValue4”: 0,

”riskLevelValue5”: 0,”riskLevelValue6”: 0,
”riskLevelValue7”: 0,”riskLevelValue8”: 0,
”riskLevelWeight”: 0.0},

”transmission”: {
”riskLevelValue1”: 0,”riskLevelValue2”: 0,
”riskLevelValue3”: 0,”riskLevelValue4”: 0,
”riskLevelValue5”: 0,”riskLevelValue6”: 0,
”riskLevelValue7”: 0,”riskLevelValue8”: 0,
”riskLevelWeight”: 0.0}},

”minDurationForExposure”: 15,
”minRiskScore”: 1,
”riskScoreClassification”: [
{”label”: ”LOW”,”maxValue”: 4095,”minValue”: 0},
{”label”: ”HIGH”,”maxValue”: 4096,”minValue”: 4096 }

]
}

GET https://dqarr2dc0prei.cloudfront.net/configuration/token/uuid

The response is json:
{”uuid”: ”9a18360e−bcb2−4bbe−a687−d26c98d3d173”}

We do not observe this uuid being sent back to the server in later requests
so its purpose remains unclear. The app now starts checking for published
keys for infected people:

GET
https://dqarr2dc0prei.cloudfront.net/dp3t/v1/gaen/exposed/1594512000000
Header:

user−agent: dp3t−sdk−android

Note that 1594512000000 is the time in seconds since 1 Jan 1970 that
corresponds to 12 July 2020 0.00 GMT, the day on which the measurements
were taken. The request URL therefore appears to have a similar format to
that used by SwissCovid. The response is 204 No Content with headers:

x−public−key: LS0tLS1CRUdJTiBQV...
signature: eyJhbGciOiJFUzI1NiJ9.ey...

However, inspection of the decompiled app code suggests that these header
values are not used by the app. The app then makes a sequence of similar
requests, changing the query time to midnight on 11 July, 10 July and so on
back to 3 July. These return zipped TEK files that seem to contain dummy
TEKs (they are signed with org.dpppt.ios.demo)

B. Connections When Idle

The app makes the same calls to download configuration settings and check
for publication of new keys when idle.

VI. SMITTESTOP (DENMARK) CONNECTIONS

A. On First StartUp

On first startup we observed no network connections being made by
SmitteStop.

B. Connections When Idle

The app makes the following three calls a few times a day. The first request
fetches updates to the published diagnoses keys:

GET https://app.smittestop.dk/API/v1/diagnostickeys/2020-07-12:0.zip
Headers:

Authorization Mobile: 68iXQyx...
Manufacturer: Google
OSVersion: 9
OS: Android−Google

The “Authorization Mobile” header value is hard-wired in the app and so
is the same for all instances. The response is a zipped file containing TEKs.
The second request fetches configuration settings:

17

GET https://app.smittestop.dk/API/v1/diagnostickeys/exposureconfiguration
Headers:

Authorization Mobile: 68iXQyx...
Manufacturer: Google
OSVersion: 9
OS: Android−Google
Cookie: NSC ejh−ttbq−mcb02−443=

ffffffff0909d48745525d5f4f58455e445a4a423660

Note the cookie sent with the request. The response sets/refreshes the cookie:
Set−Cookie: NSC ejh−ttbq−mcb02−443=

ffffffff0909d48745525d5f4f58455e445a4a423660;expires=Mon, 13−Jul
−2020 11:53:08 GMT;path=/;secure;httponly

TThe cookie value appears, however, to be the same for all instances of the
app. The response body is json:
{ ”attenuationScores”: [1,1,1,8,8,8,8,8],

”attenuationWeight”: 50,
”daysSinceLastExposureScores”: [1,1,1,1,1,1,1,1],
”daysSinceLastExposureWeight”: 50,
”durationAtAttenuationThresholds”: [51,63],
”durationScores”: [1,1,1,1,8,8,8,8],
”durationWeight”: 50,
”minimumRiskScore”: 512,
”transmissionRiskScores”: [1,1,8,8,8,8,1,1],
”transmissionRiskWeight”: 50}

The third request sends log event data:

POST https://app.smittestop.dk/API/v1/logging/logMessages
Headers:

Authorization Mobile: 68iXQyx...
Manufacturer: Google
OSVersion: 9
OS: Android−Google

The request body various, but contains various logging messages, for
example:
{

”logs”: [
{

”additionalInfo”: ””,
”api”: null,
”apiErrorCode”: null,
”apiErrorMessage”: null,
”apiVersion”: 1,
”buildNumber”: ”87”,
”buildVersion”: ”1.0.2”,
”description”: ”Failed at adding a status to the latest tuple

in SaveStatusOfLastPullCall”,
”deviceCorrelationId”: ””,
”deviceDescription”: ”Pixel 2”,
”deviceOSVersion”: ”9”,
”deviceType”: ”Android−Google”,
”exceptionMessage”: ”Value cannot be null. Parameter

name: value”,
”exceptionStackTrace”: ”at Newtonsoft.Json.JsonConvert.

DeserializeObject (System.String value, System.Type type, Newtonsoft.Json.
JsonSerializerSettings settings) &lt;0x77a5978f9c &#43; 0x&
;#43;xx8&gt; in &lt;207xxxxxxxxxx917a5e8f91b0b239405&
gt;:0 at Newtonsoft.Json.JsonConvert.DeserializeObject[T] (System.String
value, Newtonsoft.Json.JsonSerializerSettings settings) &lt;0
x77a5978e50 &#43; 0x&#43;xx3&gt; in &lt;207
xxxxxxxxxx917a5e8f91b0b239405&gt;:0 at Newtonsoft.Json.
JsonConvert.DeserializeObject[T] (System.String value) &lt;0
x77a5978cb8 &#43; 0x&#43;xxb&gt; in &lt;207
xxxxxxxxxx917a5e8f91b0b239405&gt;:0 at NDB.Covid19.Base.
AppleGoogle.ExposureNotification.Helpers.FetchExposureKeys.
StoredValueHelper.SaveStatusOfLastPullCall (System.String status) &lt
;0x77a4e31a34 &#43; 0x&#43;xx7&gt; in &lt;2287135
a28b9489c8c80db20eeff6feb&gt;:0
”,

”exceptionType”: ”ArgumentNullException”,
”innerExceptionMessage”: null,
”innerExceptionStackTrace”: null,
”innerExceptionType”: null,
”reportedTime”: ”2020−07−12T12:53:07.951068+01:00”,
”severity”: ”ERROR”

}

]
}

VII. APTURICOVID (LATVIA) CONNECTIONS

A. On First StartUp
The app initialises Firebase upon first startup, which generates the following
POST request (standard/uninteresting parameters/headers are omitted):

POST https:
//firebaseinstallations.googleapis.com/v1/projects/apturicovid/installations
Headers:

X−Android−Package: lv.spkc.gov.apturicovid
Request body:

”fid”: ”c8WD GfwSvWv89aGYrWd9d”,

The “fid” value is the Firebase Instance ID, which uniquely identifies the
current instance of the app. The response to this request echoes the fid
value and includes two tokens which appear to be used to identify the
current session.

Response is json:
{

”authToken”: {
”expiresIn”: ”604800s”,
”token”: ”eyJhbGciOiJ...Uw”

},
”fid”: ”c8WD GfwSvWv89aGYrWd9d”,
”name”: ”projects/503076402814/installations/

c8WD GfwSvWv89aGYrWd9d”,
”refreshToken”: ”2 FSe0x3z9Dv...”

}

The fid, the token and what seems to be a device identifier are now sent to
Google:
POST https://android.clients.google.com/c2dm/register3
Headers:

Authorization: AidLogin 4501126624510942234:4321116450608895094
app: lv.spkc.gov.apturicovid
X−appid: c8WD GfwSvWv89aGYrWd9d
X−Goog−Firebase−Installations−Auth:eyJhbGciOiJFUzI1NiIsI...Uw
app: lv.spkc.gov.apturicovid
device: 4501126624510942234
info: Y4Gga0ZwyogVQEb1aBJ6XhyidEyqqhY

The response is a new token that includes the fid:
token=c8WD GfwSvWv89aGYrWd9d:APA91bGC...

The first call to app-measurement.com is now made:
GET https://app-measurement.com/config/app/1\%3A503076402814\
%3Aandroid\%3A5d8cba16d971f6221aca2f
Parameters:

app instance id: f5fd7266cb7df65bdf87d6788d550c3e

Response is json.

And now telemetry data is sent to app-measurement.com. The payload
includes the Google advertising id of the device
(1d2635f5-2af7-4fb3-86e8-5fd6...), the app instance id and the fid:

POST https://app-measurement.com/a
<...>
\x02 o\x12\x04auto
\x17
\x04 cis\x12\x0freferrer API v2\x12\x04 cmp\x18\x96\x98\xe6\

xd9\xb1. \x00\x1a\x14\x08\xcd\xde\xe5\xd9\xb1.\x12\x04 fot \x80\
x8c\xa8\xdb\xb1.\x1a\x0e\x08\xcd\xde\xe5\xd9\xb1.\x12\x03 fi \x01
\x1a\x0f\x08\xac\xdf\xe5\xd9\xb1.\x12\x04 sno \x01\x1a\x13\x08\
xac\xdf\xe5\xd9\xb1.\x12\x04 sid \xcf\xa6\x83\xf8\x05\x1a\x0f\x08
\xb8\xe8\xe6\xd9\xb1.\x12\x04 lte \x01\x1a\x0e\x08\xb8\xe8\xe6\
xd9\xb1.\x12\x03 se \x00 \xa4\xe8\xe6\xd9\xb1.(\xac\xdf\xe5\xd9\
xb1.0\x96\x98\xe6\xd9\xb1.8\xcd\xde\xe5\xd9\xb1.B\x07androidJ\
x019R\x07Pixel 2Z\x05en−us‘<r\x17lv.spkc.gov.apturicovid\x82\x01\
x061.0.47\x88\x01\xe0\xda\x01\x90\x01\x85\xab\x0c\x9a\x01$
1d2635f5-2af7-4fb3-86e8-5fd6...\xa0\x01\x00\xaa\x01
f5fd7266cb7df65bdf87d6788d550c3e\xb0\x01\x84\x87\xdc\xaa\xf9\xa3

18

\xeb\xf6\xaa\x01\xb8\x01\x02\xca\x01−1:503076402814:android:5
d8cba16d971f6221aca2f\xd0\x01\xcd\xde\xe5\xd9\xb1.\xe0\x01\x01\
xf2\x01\x16c8WD GfwSvWv89aGYrWd9d\xf8\x01/\x98\x02\xec\xae
\x99\x93\x80\x84\xea\x02\xe8\x02\xc8\xeb\x86\x0b\xf0\x02

Finally, the app gets around to downloading exposure notification data. The
first call checks for published TEKs, there are none so the response is empty:

GET https://apturicovid-files.spkc.gov.lv/dkfs/v1/index.txt
Response is 200 OK with empty content.

Now the exposure notification configuration settings are fetched:
GET
https://apturicovid-files.spkc.gov.lv/exposure configurations/v1/android.json

Response is json:
{ ”attenuation scores”: [1,2,3,4,5,6,7,8],

”attenuation threshold”: [50,55],
”attenuation weight”: 1,
”days since last exposure scores”: [1,1,1,1,1,1,1,1],
”days since last exposure weight”: 1,
”duration scores”: [1,1,1,1,8,8,8,8],
”duration weight”: 1,
”minimum risk score”: 30,
”transmission risk scores”: [1,1,1,1,1,1,1,1],
”transmission risk weight”: 1 }

GET https://apturicovid-files.spkc.gov.lv/stats/v1/covid-stats.json
Response is json:
{ ”infected tests proportion”: 0.72,

”total death count”: 30, ”total infected count”: 1123,
”total tests count”: 156784,”updated at”: ”2020−07−04”,
”yesterday death count”: 0,”yesterday infected count”: 1,
”yesterday tests count”: 1185}

B. Connections When Idle

The app makes the following calls several times a day. Firstly, three calls to
fetch config and exposure information:

GET https://apturicovid-files.spkc.gov.lv/dkfs/v1/index.txt
Response is 304 Not Modified.

GET
https://apturicovid-files.spkc.gov.lv/exposure configurations/v1/android.json
Response is 304 Not Modified.

GET https://apturicovid-files.spkc.gov.lv/stats/v1/covid-stats.json
Response is 304 Not Modified.

Then two calls to send telemetry data to app-measurement.com. The first
appears to be checking for updates, to which the response is 304 Not
Modified :

GET https://app-measurement.com/config/app/1\%3A503076402814\
%3Aandroid\%3A5d8cba16d971f6221aca2f
Parameters:

app instance id: f5fd7266cb7df65bdf87d6788d550c3e

The second connection send telemetry data logging user interactions with
the app. The data is sent using a standard Firebase format and includes the
Google advertising id of the device (1d2635f5-2af7-4fb3-86e8-5fd6...), the
app instance id and the fid:

POST https://app-measurement.com/a
<...>
\x03 si\x18\xdc\x98\xe8\xfd\xc3\xda\xbb\xb5\x97\x01\x12\

x02 e\x18\xb7\xcb\xdb\xdb\xb1. \xc3\xfa\xda\xdb\xb1.\x1a\x14\x08
\xcd\xde\xe5\xd9\xb1.\x12\x04 fot \x80\x8c\xa8\xdb\xb1.\x1a\x0e\
x08\xcd\xde\xe5\xd9\xb1.\x12\x03 fi \x01\x1a\x11\x08\xbf\xc2\xdc
\xdb\xb1.\x12\x04 lte \xfe\x9e9\x1a\x0f\x08\x9a\xe9\xda\xdb\xb1.\
x12\x04 sno \x02\x1a\x13\x08\x9a\xe9\xda\xdb\xb1.\x12\x04 sid \
xff\xc5\x83\xf8\x05\x1a\x0f\x08\xc0\xc2\xdc\xdb\xb1.\x12\x03 se \
xfaH \xa6\xc2\xdc\xdb\xb1.(\x9a\xe9\xda\xdb\xb1.0\xb7\xcb\xdb\
xdb\xb1.8\xe7\x81\xb5\xda\xb1.B\x07androidJ\x019R\x07Pixel 2Z\
x05en−us‘<r\x17lv.spkc.gov.apturicovid\x82\x01\x061.0.47\x88\x01\

xe0\xda\x01\x90\x01\x85\xab\x0c\x9a\x01$1d2635f5-2af7-4fb3-86e8-
5fd6e53f2aff\xa0\x01\x00\xaa\x01
f5fd7266cb7df65bdf87d6788d550c3e\xb0\x01\x84\x87\xdc\xaa\xf9\xa3
\xeb\xf6\xaa\x01\xb8\x01\x04\xca\x01−1:503076402814:android:5
d8cba16d971f6221aca2f\xd0\x01\xc1\xd1\xe7\xd9\xb1.\xe0\x01\x01\
xf2\x01\x16c8WD\ GfwSvWv89aGYrWd9d\xf8\x01/\x98\x02\xec\xae
\x99\x93\x80\x84\xea\x02\xe8\x02\xc8\xeb\x86\x0b\xf0\x02

VIII. PROTEGO SAFE (POLAND) CONNECTIONS

A. On First StartUp
The app initialises Firebase upon first startup:

POST https://firebaseinstallations.googleapis.com/v1/projects/safesafe-
app/installations
Headers:

X−Android−Package: pl.gov.mc.protegosafe
Request body:

”fid”: ”cY46N0YUR ykuI0m Bx-kz”,

The “fid” value is the Firebase Instance ID, which uniquely identifies the
current instance of the app. The response to this request echoes the fid
value and includes two tokens.

Response is json:
{ ”authToken”: {

”expiresIn”: ”604800s”,
”token”: ”eyJhbGciOiJFUzI1N...kY”

},
”fid”: ”cY46N0YUR ykuI0m Bx-kz”,
”name”: ”projects/466787798978/installations/

cY46N0YUR ykuI0m Bx-kz”,
”refreshToken”: ”2 WCDG3OKZQD7DQJ...”}

The fid, the token and what seems to be a device identifier are now sent to
Google:
POST https://android.clients.google.com/c2dm/register3
Headers:

Authorization: AidLogin 4501126624510942234:4321116450608895094
app: lv.spkc.gov.apturicovid
X−appid: cY46N0YUR ykuI0m Bx-kz
X−Goog−Firebase−Installations−Auth:eyJhbGciOiJFUzI1N...kY
app: pl.gov.mc.protegosafe
device: 4501126624510942234
info: Y4Gga0ZwyogVQEb1aBJ6XhyidEyqqhY

The response is “Error=FIS AUTH ERROR”.

The app now makes a series of calls to Google’s SafetyNet API. The first
call sends data that includes the device hardware serial number
HT85G1A05...:

POST https://www.googleapis.com/androidantiabuse/v1/x/create
Headers:

User−Agent: DroidGuard/202117028
Request body:

<...>
\x06SERIAL\x12\x0cHT85G1A05...\x12\x14
<...>

The response is a large (44KB) protobuf. A protobuf is now sent to Google:

POST https://www.googleapis.com/androidcheck/v1/attestations/attest
Headers:

User−Agent: SafetyNet/202117028 (walleye PPR2.180905.005); gzip

The response looks like a signature. This is not forwarded to the app
backend server for verification, which would normally be the next step in
use of the SafetyNet service. The app now calls:

POST https://android.clients.google.com/c2dm/register3
Headers:

app: pl.gov.mc.protegosafe
Request body:

X−appid: cY46N0YUR ykuI0m Bx-kz
X−Goog−Firebase−Installations−Auth:eyJhbGciOiJFUzI1N...kY

19

device: 4501126624510942234

Observe that Tthe X-appid value is the fid and the device seems to be a
persistent identifer associated with the handset, perhaps the androidID
(which set on first startup of a device). The response is a token based on the
fid:
token=cY46N0YUR ykuI0m Bx-kz:APA91...

The app now fetches exposure configuration information from Firebase:

POST https://firebaseremoteconfig.googleapis.com/v1/projects/
466787798978/namespaces/firebase:fetch
Request body:

<...>
”appInstanceId”: ”cY46N0YUR ykuI0m Bx-kz”,
”appInstanceIdToken”: ”cY46N0YUR ykuI0m Bx-kz:APA91...c”,
”packageName”: ”pl.gov.mc.protegosafe”,

The response is json:
{”appName”: ”pl.gov.mc.protegosafe”,

”entries”: {
”diagnosisKeyDownloadConfiguration”: ”{\”

timeoutMobileSeconds\”:120,\”timeoutWifiSeconds\”:60,\”retryCount
\”:2}”,

”exposureConfiguration”: ”{\”minimumRiskScore\”:4,\”
attenuationScores\”:[2,5,6,7,8,8,8,8],\”attenuationWeigh\”:50,\”
daysSinceLastExposureScores\”:[7,8,8,8,8,8,8,8],\”
daysSinceLastExposureWeight\”:50,\”durationScores\”:[0,5,6,7,8,8,8,8],\”
durationWeight\”:50,\”transmissionRiskScores\”:[8,8,8,8,8,8,8,8],\”
transmissionRiskWeight\”:50,\”durationAtAttenuationThresholds
\”:[48,58]}”,

”provideDiagnosisKeysWorkerConfiguration”: ”{\”
repeatIntervalInMinutes\”:360,\”backoffDelayInMinutes\”:10}”,

”riskLevelConfiguration”: ”{\”maxNoRiskScore\”:0,\”
maxLowRiskScore\”:1499,\”maxMiddleRiskScore\”:2999}”

},
”state”: ”UPDATE”}

The app now fetches information on published exposure keys:
GET https://exp.safesafe.app/%2Findex.txt
The response is:

/1592740800−00001.zip
/1592784000−00001.zip
/1593129600−00001.zip
/1593172800−00001.zip

B. Connections When Idle

The app makes the following call several times a day:

POST https://firebaseremoteconfig.googleapis.com/v1/projects/
466787798978/namespaces/firebase:fetch
Request body:

<...>
”appInstanceId”: ”cY46N0YUR ykuI0m Bx-kz”,
”appInstanceIdToken”: ”cY46N0YUR ykuI0m Bx-kz:APA91...c”,
”packageName”: ”pl.gov.mc.protegosafe”,

The response is json: {”state”: ”NO CHANGE”}

The following call is made less frequently:

GET https://exp.safesafe.app/%2Findex.txt

The response is as above.

IX. COVIDTRACKER (IRELAND) CONNECTIONS

A. On First StartUp

On first startup (before any user interaction) the app initialises Firebase:

POST https://firebaseinstallations.googleapis.com/v1/projects/
api-7164394121131961544-290715/installations
Headers:

X−Android−Package: com.covidtracker.hse
Request body:

”fid”: ”do6qB-2BSDSRi2XLZIr-ul”

The “fid” value is the Firebase Instance ID, which uniquely identifies the
current instance of the app. The response to this request echoes the fid
value and includes two tokens.

Response is json:
{ ”authToken”: {

”expiresIn”: ”604800s”,
”token”: ”eyJhbGciOiJFUzI1N...0Q”

},
”fid”: ”do6qB-2BSDSRi2XLZIr-ul”,
”name”: ”projects/1087125483031/installations/do6qB-

2BSDSRi2XLZIr-ul”,
”refreshToken”: ”2 7PZMhQEHJjyKfseL...”}

The now app now sends the fid and a persistent device identifier (likely the
Android ID, which is set on first startup of a device and only changes upon
a factory reset) toi android.clients.google.com :

POST https://android.clients.google.com/c2dm/register3
Headers:

app: com.covidtracker.hse
Request body:

app: com.covidtracker.hse
X−appid: do6qB-2BSDSRi2XLZIr-ul
device: 4501126624510942234

The response is “Error=FIS AUTH ERROR”. The app now downloads
exposure notification configuration data:.

GET https://app.covidtracker.ie/api/settings

The response is 56KB of json containing data protection text etc plus the
following config settings:

”exposureCheckInterval”: ”120”,
”exposureConfig”: ”{\”minimumRiskScore\”:1,\”

attenuationLevelValues\”:[2,3,4,5,6,7,8,8],\”attenuationWeight\”:1,\”
daysSinceLastExposureLevelValues\”:[1,1,1,1,1,1,1,1],\”
daysSinceLastExposureWeight\”:1,\”durationLevelValues
\”:[1,1,1,1,1,1,1,1],\”durationWeight\”:1,\”transmissionRiskLevelValues
\”:[1,1,1,1,1,1,1,1],\”transmissionRiskWeight\”:1, \”
durationAtAttenuationThresholds\”: [56,62],\”thresholdWeightings
\”:[1,1,0],\”timeThreshold\”:15}”,

When the user navigates to the consent page within the app and agrees the
app then makes a sequence of requests to Google’s SafetyNet API.

POST https://app.covidtracker.ie/api/register
Request body:
{}

The next call sends data that includes the device hardware serial number
HT85G1A05... to Google:

POST https://www.googleapis.com/androidantiabuse/v1/x/create
Headers:

User−Agent: DroidGuard/202117028
Request body:

<...>
\x06SERIAL\x12\x0cHT85G1A05...\x12\x14
<...>

The response is a large (185KB) protobuf that looks like it contains a
program executable. A 29KB protobuf is then sent to Google:

POST https://www.googleapis.com/androidcheck/v1/attestations/attest
Headers:

X−Android−Package: com.covidtracker.hse
User−Agent: SafetyNet/202117028 (walleye PPR2.180905.005); gzip

The response looks like a base64 encoded payload which includes certificate
details. This is then forwarded as the payload in a PUT:

PUT https://app.covidtracker.ie/api/register

20

The response is json containing a “refreshToken” and “token” values. The
app now calls:

GET https://app.covidtracker.ie/api/stats
Headers:

authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k

The value of the “authorization: Bearer” matches the “token” value
returned in the response to the previous request. This same value is sent in
all subsequent requests. The response is 17KB of json containing infection
statistics data. The app now checks for published keys for infected people:

GET https://app.covidtracker.ie/api/exposures/
Headers:

authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k
Parameters:

since: 0
limit: 1

The response is:

[
{

”id”: 6,
”path”: ”exposures/ie/1594296005512.zip”

}
]

and then fetches the keys themselves:

GET https://app.covidtracker.ie/api/data/exposures/ie/1594296005512.zip
Authorization: Bearer

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k

The response is a zipped file containing TEKs. The app also sends some
telemetry data:

POST https://app.covidtracker.ie/api/metrics
Headers:

authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k
Request body:

{ ”event”: ”CALLBACK OPTIN”,
”os”: ”android”,
”version”: ”1.0.40”}

POST https://app.covidtracker.ie/api/metrics
Headers:

authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k
Request body:
{ ”event”: ”DAILY ACTIVE TRACE”,

”os”: ”android”,
”version”: ”1.0.40”}

B. Connections When Idle

The app makes the following call approximately every 2 hours, and also
sometimes when the app is brought to the foreground:

GET https://app.covidtracker.ie/api/exposures/
Headers:

authorization: Bearer
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI...4k
Parameters:

since: 0
limit: 1

The response is “[]”.

X. GOOGLE PLAY SERVICES CONNECTIONS

Google Play Services sends data to Google roughly every 10 minutes using
the following request:

POST https://play.googleapis.com/p/log/batch
Headers:

Authorization: Bearer ya29.a0AfH6SMD tttV5NQ...UFA
X−SERVER−TOKEN: CAESKQDyi0h8u1NFMSbtIY...
Cookie: NID=204=cZfpA V3EeVcgH8ON4DUR...
User−Agent: Android/com.google.android.gms/202117028 (walleye

PPR2.180905.005); gzip

Note the cookie, Authorization and X-SERVER-TOKEN headers sent with
this request (the cookie is set by the response to a previous request to
play.googleapis.com/p/ log/batch), which allows requests to be easily linked
together. The request body is binary encoded, often quite large, and the
content changes. It appears to contain details and telemetry of apps and
services running on the handset. This includes fine-grained details of errors
logged, including execution backtraces, details of network connection errors
etc, and information on all apps and services installed. Some examples of
information sent are as follows.

Information about the Exposure Notification service within Google Play
Services:

\x10\x0e\x18\x00\x12\x06\x08\x0e\x10\x0f\x18\x00\x12\x06\x08\
x0f\x10\x10\x18\x00\x12\x06\x08\x10\x10\x11\x18\x00\x12\x06\
x08\x11\x10\x12\x18\x00\x12\x06\x08\x12\x10\x13\x18\x00\x12\
x06\x08\x13\x10\x14\x18\x00\x12\x06\x08\x14\x10\x1e\x18\x00\
x12\x06\x08\x1e\x10x\x18\x00\x12\x04\x08x\x18\x00:\x00J\x02\
x08\x01R\x00Z\x17ch.admin.bag.dp3t 10050‘\x00j)

#rolling proximity id key size bytes\x12\x0216j)
”max interpolation duration seconds\x12\x03600j(
”scan interval random range seconds\x12\x0290j\x1d
\x17timestamp noise minutes\x12\x0230j\x0f
\x07enabled\x12\x04truej:
1ble scheduler use scheduled executor max delay ms\x12\x0530000j

\x1c
\x15scan interval seconds\x12\x03300j−
(min exposure bucketized duration seconds\x12\x011j\x0e

scan mode\x12\x012j3
−associated metadata encryption key size bytes\x12\x0216j,
&default min exposure attenuation value\x12\x0247j\x17
\x12advertise tx power\x12\x011j\x16
\x11scan time seconds\x12\x014j7
2risk score bucketed transmission risk scores count\x12\x018j\x17
\x11contact id length\x12\x0216j8
0data quality log ble advertising stats only once\x12\x04truej\x13
\x0eadvertise mode\x12\x011j.
\%reschedule start scan min interval ms\x12\x0510000j
\x18wake up for ble executor\x12\x04truej\x1e
\x15advertise connectable\x12\x05falsej−
’id rotation period random range seconds\x12\x0290j.
&data quality log ble advertising stats\x12\x04truej6
/tk rolling period multiple of id rolling period\x12\x03144j&
temporary tracing key size bytes\x12\x0216j$
\x1brequire multi advertisement\x12\x05falsej\x1f
\x19id rolling period minutes\x12\x0210j
\x1aid rotation period seconds\x12\x03690j&
\x1fdata quality log period minutes\x12\x03240j$
\x1eclearcut upload period minutes\x12\x0230\x80\x01\x01\x9a\

x01<
\x04\x10\x01\x18\x00
\x07\x08\x01\x10\x90N\x18\x00
\x08\x90N\x10\xa0\x8d\x06\x18\x00

<...>
\x05\x08\x90N\x18\x00x\xa08\x88\x01\xb5\x8c\xde\x14\xb0\

x01−\xba\x01\x04\x08\x01\x10\x002\
x1cNEARBY EXPOSURE NOTIFICATION:\x00@\xf2\x97\xf7\x14H\
x02P\x05Z\x08\x08\x01\x10\x01\x18\x02 \x00j\x06\x08\x00\x10\
x00\x18\x00\x18\x01

What appears to be telemetry from the Exposure Notification service and the
CovidTracker app:

9,10168,l,wl,nearby:ExposureNotificationScanner,0,f,0,0,0,0,0,p,0,0,0,0,0,
bp,0,0,0,0,0,w,0,0,0,0

9,10168,l,wl,∗alarm∗,0,f,0,0,0,0,0,p,0,0,0,0,0,bp,0,0,0,0,0,w,0,0,0,0

21

9,10168,l,wl,∗launch∗,0,f,0,0,0,0,0,p,0,0,0,0,0,bp,0,0,0,0,0,w,0,0,0,0
9,10178,l,wl,∗job∗/com.covidtracker.hse/androidx.work.impl.background.

systemjob.SystemJobService,0,f,0,0,0,0,0,p,0,0,0,0,0,bp,0,0,0,0,0,w,0,0,0,0
27

Plus phone identifiers, including the SIM serial number
(8935311180135555..) and the phone number (+353892197...):

\x80\xd3\x99\xfa\xb0.∗\xa5\x1e\xee\x02\x08\x9f\xd6\xbe\xf7\xb0
.2\x7f\x12\x00\x1a(\x08\x88\xa0\xd5\x1c\x12 6.0.117 (Xorn RC10.
phone dynamic)”\x02
\x00\xb2\x01I
G\x08\x01\x10\x00\x18\x02”\x0527211∗\x0c\x08\x01\x10\x02\

x1a\x06\x08\x01\x10\x01\x18\x012\x138935311180135555...:\x13
8935311180135555...H\x01\xd0\x01\x03X\x0ex\xa08\x88\x01\x85\xec
\xa5\x1d\x82\x01\xcd\x01\x12\xac\x01\x08\x03\x12\xa7\x
<...>
\xa3\xa4\xfa\x80\xb4.∗\xbc[\x80\x03\x08\xed\xef\xea\xfd\xb3.2\x8e
\x01\x12\x00\x1a(\x08\xa8\x88\x91\x1d\x126.1.097 (Yeti RC11.
phone dynamic)”\x0f

+353892197...\xb2\x01K

A checkin request is made roughly once per day. This request is quite
worriesome since it includes several hardware identifiers including the
phone IMEI (35753708924...), the hardware serial number (HT85G1A05...),
the SIM serial number and the user email address (highlighted in bold
below). Cookie and an X-SERVER-TOKEN headers are sent with the
request, both being the same as those sent with the
play.googleapis.com/p/ log/batch requests, thus allowing them to be linked
together. The Authorization: Bearer header value sent with
play.googleapis.com/p/ log/batch is included in the response body, see
below:

POST https://android.googleapis.com/checkin
Headers:

Cookie: NID=204=Z- RXuS4ZdrKlKkBoa...
User−Agent: Dalvik/2.1.0 (Linux; U; Android 9; Pixel 2 Build/PPR2

.180905.005)
X−SERVER−TOKEN: CAESKQDyi0h8u1NFMSbtIY...

Request body:f
<...>
2018−09−05\x10\xe8\xc3\xa7\x9d\xa3.2\x0527205:\x0527211B\
x06WIFI::H\x00p\x02z\x15\x08\x08\x10\x01\x1a\x0bunspecified”\x00
(\x00\x82\x01]
\x0527211\x12\x0cTesco

Mobile\x1a\x010 \x00 \x01 \x022\x0f272110103800000:(0
AFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB\x02\x15\xe5\x90\
x01\x01\x9a\x01\x04WIFI2\x05en−US8\xfc\xa0\xab\xfb\xd7\xf6\xce
\x8d\xc9\x01J\x0c404e36d3f4bdR\x0f35753708924...Z\x1a[
<...>@gmail.com]Z\xc7\x02ya29.a0AfH6SMCv...

Europe/Dubliniv\xd4\xa3\x7f\x84\xb0\xf7;p\x03z\
x1cbfMkwynjHzXGBPc2WT62otR8JkI=\x82\x01\x0cHT85G1A05...\x92
\x01\x92\\\x08\x03\x10\x01\x18\x01
<...>

The following requests are made less frequently:

POST https://android.googleapis.com/auth
Headers:

device: 3e7736d127071c1a
app: com.google.android.gms
User−Agent: GoogleAuth/1.4 (walleye PPR2.180905.005); gzip

Request body:
androidId: 3e7736d127071c1a
app: com.google.android.gms
Email: <...>@gmail.com
client sig: 38918a453d07199354f8b19af05ec6562ced5788
Token: aas et/AKppINaJgeUW3nalnMjiqfI8KVMmfTkO...g9w=
callerSig: 38918a453d07199354f8b19af05ec6562ced5788

POST https://www.googleapis.com/experimentsandconfigs/v1/
getExperimentsAndConfigs?r=2&c=1
Headers:

X−SERVER−TOKEN: CAESKQDyi0h8i9ip...
Authorization: Bearer ya29.a0AfH6SMAnQ3dP5Z3T...XTQ

User−Agent: Android/com.google.android.gms/202117028 (walleye
PPR2.180905.005); gzip
Request Body:
<...>

0ContactTracingFeature add experiment id to logs\x18\x00H\x02\
x122

,ContactTracingFeature advertise connectable\x18\x00H\x02\x12+
\%ContactTracingFeature advertise mode\x10\x01H\x01\x12/
)ContactTracingFeature advertise tx power\x10\x01H\x01\x12:
+ContactTracingFeature advertise tx power o\x10\xf1\xff\xff\xff\

xff\xff\xff\xff\xff\x01H\x01\x129
3ContactTracingFeature advertisement metadata v 1 1\x18\x01H\

x02\x12A
;ContactTracingFeature aggregate sightings from single scan\x18\

x01H\x02\x12H
BContactTracingFeature allow downgrade bluetooth discoverable mode

\x18\x01H\x02\x12E
?ContactTracingFeature associated encrypted metadata size bytes\

x10\x04H\x01\x12J
DContactTracingFeature associated metadata encryption key size bytes

\x10\x10H\x01\x12K
EContactTracingFeature ble scanning adjust interval and window values

\x18\x01H\x02\x12P
HContactTracingFeature ble scheduler use scheduled executor max delay ms

\x10\xb0\xea\x01H\x01\x122
,ContactTracingFeature bt enable retry times\x10\x02H\x01\x126
/ContactTracingFeature bt enable timeout millis\x10\xc4\x13H\x01

\x129
3ContactTracingFeature calculate diagnosis key hash\x18\x01H\x02

\x12G
AContactTracingFeature check client record after client uninstall\

x18\x01H\x02\x12:
−ContactTracingFeature clearcut sampling rate \x00\x00\x00\x00\

x00\x00\xf0?H\x03\x12O
IContactTracingFeature completed matching request record retention period

\x10\x0eH\x01\x12X
AContactTracingFeature data quality attempted keys histogram bins2

\x11
\x0f

\x01\x90N\xa0\x8d\x06\xc0\x84=\x80\xad\xe2\x04H\x05\x12>
8ContactTracingFeature data quality log advertise failed\x18\x01H\

x02\x12B
<ContactTracingFeature data quality log attempted keys count\x18

\x00H\x02\x12F
@ContactTracingFeature data quality log attempted keys histogram\

x18\x01H\x02\x12C
=ContactTracingFeature data quality log ble advertising stats\x18\

x01H\x02\x12M
GContactTracingFeature data quality log ble advertising stats only once

\x18\x01H\x02\x12?
9ContactTracingFeature data quality log bluetooth enabled\x18\

x01H\x02\x12G
AContactTracingFeature data quality log client app wake ups count

\x18\x01H\x02\x12J
DContactTracingFeature data quality log contains opportunistic scans

\x18\x01H\x02\x12A
;ContactTracingFeature data quality log diagnosis key files\x18\

x00H\x02\x12K
EContactTracingFeature data quality log diagnosis keys provided count

\x18\x00H\x02\x12?
9ContactTracingFeature data quality log en module version\x18\

x01H\x02\x129
3ContactTracingFeature data quality log flag values\x18\x01H\x02

\x12>
8ContactTracingFeature data quality log location enabled\x18\x01H

\x02\x12:
4ContactTracingFeature data quality log package name\x18\x01H\

x02\x12=
6ContactTracingFeature data quality log period minutes\x10\xf0\

x01H\x01\x12?
9ContactTracingFeature data quality log random scan empty\x18\

x01H\x02\x12B
<ContactTracingFeature data quality log random sighting rssi\x18\

x01H\x02\x12F
@ContactTracingFeature data quality log rejected key files count\

x18\x01H\x02\x12<

22

6ContactTracingFeature data quality log rssi histogram\x18\x00H\
x02\x12?

9ContactTracingFeature data quality log scan failed count\x18\
x01H\x02\x12A

;ContactTracingFeature data quality log scan time histogram\x18\
x01H\x02\x12A

;ContactTracingFeature data quality log sightings histogram\x18\
x00H\x02\x12?

9ContactTracingFeature data quality log whitelist failure\x18\x01H
\x02\x12\x7f

7ContactTracingFeature data quality rssi histogram bins2B
<...>
∗ContactTracingFeature partner public keys2\x91
\x8e
\x95\x01ch.admin.bag.dp3t:228−v1,MFkwEwYHK...
\x9b\x01lv.spkc.gov.apturicovid:247−v1,MFkwEwYHKoZIzj0...
\xa6\x02it.ministerodellasalute.immuni:222−v1,MFkwEwYH...
\x99\x01fct.inesctec.stayaway:268−v1,MFkwEwYH...
\x98\x01com.covidtracker.hse:272−v1,MFkwEwYHKj...
\x9e\x01uy.gub.salud.plancovid19uy:748−v1,MFkwEwYHKoZI...
\x98\x01de.rki.coronawarnapp:262−v1,MFkwEwYHKoZ...
\x9c\x01de.rki.coronawarnapp.dev:262−v1,MFkwEwYHKoZIzj0...
\x99\x01pl.gov.mc.protegosafe:260−v1,MFkwEwYHKoZI...
\x9f\x01pl.gov.mc.protegosafe.stage:260−v1,MFkwEwYHKo...
\x95\x01sa.gov.nic.tabaud:420−v1,MFkwEwYHKoZIzj0...
\x99\x01au.gov.dta.covidtrace:505−v1,MFkwEwYHKo...
\xb3\x01com.netcompany.smittestop exposure notification:238−v1,

MFkw...
\x9b\x01jp.go.mhlw.covid19radar:440−v1,MFkwEwYHKoZIzj0C...
\x9c\x01at.roteskreuz.stopcorona:232−v1,MFkwEwYHKoZIzj0...
\xa0\x01gov.vdh.exposurenotification:310−v2,MFkwEwYHKoZIzj0...
\x9b\x01egnc.moh.bruhealthtrace:528−v1,MFkwEwYHKoZIzj0...
\x99\x01com.gha.covid.tracker:266−v1,MFkwEwYHKoZIzj0...
\x8e\x01mx.gob.www:334−v1,MFkwEwYHKoZIzj0CAQYIK...
\x96\x01ec.gob.asi.android:740−v1,MFkwEwYHKoZIzj0...
\x95\x01es.gob.radarcovid:214−v1,MFkwEwYHK...
\x9e\x01hr.miz.evidencijakontakata:219−v1,MFkwEwYHKo...
\x9c\x01br.gov.datasus.guardioes:724−v1,MFkwEwYHK...
\x8f\x01mt.gov.dp3t:278−v1,MFkwE...
\x9f\x01ca.gc.hcsc.canada.stopcovid:302−v1,MFkwEwYHKoZ...
\xa2\x01gov.adph.exposurenotifications:310−v1,MFkw...\x05\x12:
4ContactTracingFeature require checkbox for clearcut\x18\x01H\

x02\x128
2ContactTracingFeature require multi advertisement\x18\x00H\x02\

x12A
;ContactTracingFeature restart advertising when tek deleted\x18\

x01H\x02\x12L
;ContactTracingFeature risk score attenuation value buckets2\x0b

XI. GOOGLE PLAY STORE CONNECTIONS

GET https://lh4.googleusercontent.com/MXiDx8ELb7pJl32MDUGr9zufJlk
gwvJYRzyP4WcVx2a7vpj9x57OJxOz00giHKh1pM=rw-h244-v1-e15
Headers:

user−agent: com.android.vending/82071600 (Linux; U; Android 9;
en US; Pixel 2; Build/PPR2.180905.005; Cronet/85.0.4162.4)

GET https://play.googleapis.com/play/log/timestamp
User−Agent: Dalvik/2.1.0 (Linux; U; Android 9; Pixel 2 Build/PPR2

.180905.005)

POST https://play.googleapis.com/play/log?format=raw&proto\ v2=true
User−Agent: Android−Finsky/20.7.16−all\%20\%5B0\%5D

\%20\%5BPR\%5D\%20317546459
Authorization: Bearer ya29.a0AfH6SMBzxIslH...

POST https://android.googleapis.com/auth
Headers

device: 3e7736d127071c1a
app: com.android.vending
User−Agent: GoogleAuth/1.4 (walleye PPR2.180905.005); gzip

Request body:
androidId: 3e7736d127071c1a
Email: <... >@gmail.com
client sig: 38918a453d07199354f8b19af05ec6562ced5788
Token: aas et/AKppINaJgeUW3naln...

callerSig: 38918a453d07199354f8b19af05ec6562ced5788

POST https://www.googleapis.com/experimentsandconfigs/v1/
getExperimentsAndConfigs?r=1&c=128

Authorization: Bearer ya29.a0AfH6SMA...
User−Agent: Android−Finsky/20.7.16−all\%20\%5B0\%5D

\%20\%5BPR\%5D\%20317546459 (api=3,versionCode=82071600,sdk
=28,device=walleye,hardware=walleye,product=walleye,
platformVersionRelease=9,model=Pixel\%202,buildId=PPR2.180905.005,
isWideScreen=0,supportedAbis=arm64−v8a;armeabi−v7a;armeabi) (walleye
PPR2.180905.005); gzip

GET https://play-fe.googleapis.com/fdfe/selfUpdate
User−Agent: Android−Finsky/20.7.16−...
x−dfe−device−id: 3e7736d127071c1a
x−dfe−device−config−token: CisaKQoTNDUwM...
authorization: Bearer ya29.a0AfH6SMB...
x−dfe−cookie: EAEYACICSUUyPE...
x−limit−ad−tracking−enabled: false
x−dfe−phenotype: H4sIAAAAAAA...
x−dfe−encoded−targets: CAESPombgQbxBwLYAwE...
x−ad−id: 1d2635f5-2af7-4fb3-86e8-5fd6e53f2aff

POST https://play-fe.googleapis.com/fdfe/bulkPrefetch
user−agent: Android−Finsky/20.7.16−...
x−dfe−device−id: 3e7736d127071c1a
x−dfe−device−config−token: CisaKQoTNDUwMTEy...
authorization: Bearer ya29.a0AfH6SMBzxIs...
x−dfe−cookie: EAEYACICSUUyPENpc...
x−limit−ad−tracking−enabled: false
x−dfe−device−checkin−consistency−token:

ABFEt1VKH x3ydZWIzoZSXqkDfbQ...
x−dfe−phenotype: H4sIAAAAAAAAADXPS...
x−dfe−encoded−targets: CAESPombgQbxBwLYAwE...
x−ad−id: 1d2635f5-2af7-4fb3-86e8-5fd6e53f2aff

